
Teresa Valdes-Solis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7574564/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Visible light spectroscopic analysis of Methylene Blue in water; the resonance virtual equilibrium hypothesis. Dyes and Pigments, 2019, 161, 448-456.	2.0	42
2	A new continuous flow-through structured reactor for the photodegradation of aqueous contaminants. Journal of Environmental Chemical Engineering, 2018, 6, 4070-4077.	3.3	6
3	Room temperature sintering of polar ZnO nanosheets: I-evidence. Physical Chemistry Chemical Physics, 2017, 19, 16406-16412.	1.3	8
4	Room temperature sintering of polar ZnO nanosheets: II-mechanism. Physical Chemistry Chemical Physics, 2017, 19, 16413-16425.	1.3	11
5	Novel high surface area stainless steel wire mesh supported Ni0.7Zn0.3O solid solution prepared by room temperature sacrificial template accelerated hydrolysis. Application in the production of hydrogen from methanol. Applied Catalysis B: Environmental, 2014, 160-161, 57-66.	10.8	6
6	High surface area stainless steel wire mesh-supported TiO2 prepared by sacrificial template accelerated hydrolysis. A monolithic photocatalyst superior to P25 TiO2. Journal of Environmental Chemical Engineering, 2014, 2, 2229-2235.	3.3	11
7	Nanostructured stainless steel wire mesh-supported CdxZn1â^'xO: A stable photocatalyst under visible and ultraviolet irradiation. Journal of Environmental Chemical Engineering, 2014, 2, 1612-1620.	3.3	10
8	Fabrication of wire mesh-supported ZnO photocatalysts protected against photocorrosion. Applied Catalysis B: Environmental, 2013, 140-141, 189-198.	10.8	42
9	Stainless steel wire mesh-supported ZnO for the catalytic photodegradation of methylene blue under ultraviolet irradiation. Journal of Hazardous Materials, 2013, 246-247, 126-134.	6.5	58
10	Understanding Gas-Induced Structural Deformation of ZIF-8. Journal of Physical Chemistry Letters, 2012, 3, 1159-1164.	2.1	143
11	Photochemical Behavior of Carbon Adsorbents. , 2012, , 521-547.		7
12	Tailoring the synthesis of stainless steel wire mesh-supported ZnO. Materials Research Bulletin, 2012, 47, 1577-1586.	2.7	27
13	Highly Active Cobalt Oxide Catalysts Prepared by SACOP for the Preferential Oxidation of CO in Excess Hydrogen. ChemCatChem, 2011, 3, 734-740.	1.8	12
14	A simple visible spectrum deconvolution technique to prevent the artefact induced by the hypsochromic shift from masking the concentration of methylene blue in photodegradation experiments. Applied Catalysis A: General, 2011, 402, 218-223.	2.2	25
15	Size-controlled preparation of ruthenium nanoparticles using polyaromatic amine-containing compounds as hydrogenation nanocatalyst precursors. International Journal of Nanoparticles, 2010, 3, 104.	0.1	1
16	Copper manganite as a catalyst for the PROX reaction. Deactivation studies. International Journal of Hydrogen Energy, 2010, 35, 1879-1887.	3.8	25
17	The synthesis of high surface area cerium oxide and cerium oxide/silica nanocomposites by the silica aquagel-confined co-precipitation technique. Microporous and Mesoporous Materials, 2010, 127, 198-204.	2.2	6
18	A highly active, selective and stable copper/cobalt-structured nanocatalyst for methanol	10.8	45

⁸ decomposition. Applied Catalysis B: Environmental, 2010, 99, 257-264.

TERESA VALDES-SOLIS

#	Article	IF	CITATIONS
19	Highly dispersed platinum nanoparticles on carbon nanocoils and their electrocatalytic performance for fuel cell reactions. Electrochimica Acta, 2009, 54, 2234-2238.	2.6	78
20	Fabrication of mesoporous SiO2–C–Fe3O4/γ–Fe2O3 and SiO2–C–Fe magnetic composites. Journal of Colloid and Interface Science, 2009, 340, 230-236.	5.0	24
21	Preferential oxidation of CO by CuOx/CeO2 nanocatalysts prepared by SACOP. Mechanisms of deactivation under the reactant stream. Applied Catalysis A: General, 2009, 361, 160-169.	2.2	51
22	Shape and Size Effects of ZnO Nanocrystals on Photocatalytic Activity. Journal of the American Chemical Society, 2009, 131, 12540-12541.	6.6	1,016
23	Preparation, Characterization, and Enzyme Immobilization Capacities of Superparamagnetic Silica/Iron Oxide Nanocomposites with Mesostructured Porosity. Chemistry of Materials, 2009, 21, 1806-1814.	3.2	67
24	An attempt to rank copper-based catalysts used in the CO-PROX reaction. International Journal of Hydrogen Energy, 2008, 33, 197-205.	3.8	67
25	Signatures of Clustering in Superparamagnetic Colloidal Nanocomposites of an Inorganic and Hybrid Nature. Small, 2008, 4, 254-261.	5.2	30
26	Direct synthesis of graphitic carbon nanostructures from saccharides and their use as electrocatalytic supports. Carbon, 2008, 46, 931-939.	5.4	83
27	Corrigendum to "Towards the hydrogen economy?―[Int. J. Hyd. Energy 32(12) (2007) 1625–1637]. International Journal of Hydrogen Energy, 2008, 33, 927.	3.8	7
28	Highly active structured catalyst made up of mesoporous Co3O4 nanowires supported on a metal wire mesh for the preferential oxidation of CO. International Journal of Hydrogen Energy, 2008, 33, 6687-6695.	3.8	60
29	Templated synthesis of high surface area inorganic oxides by silica aquagel-confined co-precipitation. Microporous and Mesoporous Materials, 2008, 112, 291-298.	2.2	10
30	Control of the structural properties of mesoporous polymers synthesized using porous silica materials as templates. Microporous and Mesoporous Materials, 2008, 112, 319-326.	2.2	20
31	Templated synthesis of nanosized mesoporous carbons. Materials Research Bulletin, 2008, 43, 1898-1904.	2.7	8
32	Solid-phase synthesis of graphitic carbon nanostructures from iron and cobalt gluconates and their utilization as electrocatalyst supports. Physical Chemistry Chemical Physics, 2008, 10, 1433.	1.3	67
33	Fabrication of Monodisperse Mesoporous Carbon Capsules Decorated with Ferrite Nanoparticles. Journal of Physical Chemistry C, 2008, 112, 3648-3654.	1.5	60
34	Cyanide and Phenol Oxidation on Nanostructured Co[sub 3]O[sub 4] Electrodes Prepared by Different Methods. Journal of the Electrochemical Society, 2008, 155, K110.	1.3	33
35	Synthesis of Graphitic Carbon Nanostructures from Sawdust and Their Application as Electrocatalyst Supports. Journal of Physical Chemistry C, 2007, 111, 9749-9756.	1.5	147
36	Facile synthetic route to nanosized ferrites by using mesoporous silica as a hard template. Nanotechnology, 2007, 18, 145603.	1.3	30

TERESA VALDES-SOLIS

#	Article	IF	CITATIONS
37	Manganese ferrite nanoparticles synthesized through a nanocasting route as a highly active Fenton catalyst. Catalysis Communications, 2007, 8, 2037-2042.	1.6	97
38	Synthesis of Highly Uniform Mesoporous Sub-Micrometric Capsules of Silicon Oxycarbide and Silica. Chemistry of Materials, 2007, 19, 3096-3098.	3.2	50
39	Synthetic Route to Nanocomposites Made Up of Inorganic Nanoparticles Confined within a Hollow Mesoporous Carbon Shell. Chemistry of Materials, 2007, 19, 5418-5423.	3.2	97
40	Templated Synthesis of Mesoporous Superparamagnetic Polymers. Advanced Functional Materials, 2007, 17, 2321-2327.	7.8	21
41	Towards the hydrogen economy?. International Journal of Hydrogen Energy, 2007, 32, 1625-1637.	3.8	713
42	Enhanced high rate performance of LiMn2O4 spinel nanoparticles synthesized by a hard-template route. Journal of Power Sources, 2007, 166, 492-498.	4.0	68
43	Encapsulation of nanosized catalysts in the hollow core of a mesoporous carbon capsule. Journal of Catalysis, 2007, 251, 239-243.	3.1	70
44	Controlled release of precipitating agents through solvothermal destabilization of microemulsions: one-pot synthesis of monoclinic zirconia nanostructures. Journal of Materials Chemistry, 2007, 17, 1958-1963.	6.7	17
45	High Surface Area CuMn2O4 Prepared by Silica-Aquagel Confined co-precipitation. Characterization and Testing in Steam Reforming of Methanol (SRM). Catalysis Letters, 2007, 118, 8-14.	1.4	23
46	Nanosized catalysts for the production of hydrogen by methanol steam reforming. Catalysis Today, 2006, 116, 354-360.	2.2	83
47	altimg= si62.gif_display= inline_overflow= scroll xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML"	1.9	12
48	High-surface area inorganic compounds prepared by nanocasting techniques. Materials Research Bulletin, 2006, 41, 2187-2197.	2.7	105
49	Intrinsic channel maldistribution in monolithic catalyst support structures. Chemical Engineering Journal, 2005, 109, 89-96.	6.6	13
50	Preparation of Nanosized Perovskites and Spinels through a Silica Xerogel Template Route. Chemistry of Materials, 2005, 17, 1919-1922.	3.2	62
51	Mechanism of low-temperature selective catalytic reduction of NO withBNH3 over carbon-supported Mn3O4Role of surface NH3 species: SCR mechanism. Journal of Catalysis, 2004, 226, 138-155.	3.1	148
52	Adsorption and breakthrough performance of carbon-coated ceramic monoliths at low concentration of n-butane. Chemical Engineering Science, 2004, 59, 2791-2800.	1.9	54
53	Kinetics and Mechanism of Low-Temperature SCR of NOxwith NH3over Vanadium Oxide Supported on Carbonâ^'Ceramic Cellular Monoliths. Industrial & Engineering Chemistry Research, 2004, 43, 2349-2355.	1.8	32
54	Mechanism of low temperature selective catalytic reduction of NO with NH3over carbon-supported Mn3O4: Active phase and role of surface NO species. Physical Chemistry Chemical Physics, 2004, 6, 453-464.	1.3	40

#	Article	IF	CITATIONS
55	Low-temperature SCR of NOx with NH3 over carbon-ceramic supported catalysts. Applied Catalysis B: Environmental, 2003, 46, 261-271.	10.8	94
56	Preparation of microporous carbon–ceramic cellular monoliths. Microporous and Mesoporous Materials, 2001, 43, 113-126.	2.2	52
57	Low-temperature SCR of NO with NH3 over carbon–ceramic cellular monolith-supported manganese oxides. Catalysis Today, 2001, 69, 259-264.	2.2	41