Michael A Portelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7574199/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genetics of Asthma: Insights From Genome Wide Association Studies. , 2022, , 308-325.		1
2	Human bronchial epithelial cells from patients with asthma have an altered gene expression profile. ERJ Open Research, 2022, 8, 00625-2021.	2.6	2
3	Extended lifespan of bronchial epithelial cells maintains normal cellular phenotype and transcriptome integrity. ERJ Open Research, 2021, 7, 00254-2020.	2.6	0
4	Phenotypic and functional translation of IL33 genetics in asthma. Journal of Allergy and Clinical Immunology, 2021, 147, 144-157.	2.9	29
5	Translational Analysis of Moderate to Severe Asthma GWAS Signals Into Candidate Causal Genes and Their Functional, Tissue-Dependent and Disease-Related Associations. Frontiers in Allergy, 2021, 2, 738741.	2.8	3
6	Phenotypic and functional translation of IL1RL1 locus polymorphisms in lung tissue and asthmatic airway epithelium. JCI Insight, 2020, 5, .	5.0	26
7	Investigating the effects of interleukin-33 on rhinovirus A induced changes in asthmatic bronchial epithelial cells. , 2020, , .		0
8	Rhinovirus & IL33 driven HBEC gene signatures are disease & IL1RL1 polymorphism dependent. , 2020, , .		0
9	Functional Translation of IL33 Locus Polymorphisms Into Altered Epithelial Cell Function Underlying Asthma. , 2019, , .		0
10	Moderate-to-severe asthma in individuals of European ancestry: a genome-wide association study. Lancet Respiratory Medicine,the, 2019, 7, 20-34.	10.7	183
11	Using transcriptomics to understand the potential functions of lung function associated gene, GPR126 in human airway smooth muscle cells. , 2019, , .		0
12	IL33 receptor activation is IL33 isoform and receptor genotype specific. , 2019, , .		1
13	Type 2 cytokines and biomarkers in asthma patient sera show coordinated expression and identify patient subsets. , 2019, , .		0
14	Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential druggable targets. Nature Genetics, 2017, 49, 416-425.	21.4	257
15	Airway and peripheral urokinase plasminogen activator receptor is elevated in asthma, and identifies a severe, nonatopic subset of patients. Allergy: European Journal of Allergy and Clinical Immunology, 2017, 72, 473-482.	5.7	18
16	A Genome Wide Association Study of Moderate-Severe Asthma in subjects from the United Kingdom. , 2017, , .		0
17	Urokinase plasminogen activator receptor polymorphisms and airway remodelling in asthma. European Respiratory Journal, 2016, 47, 1568-1571.	6.7	7
18	Letters to the Editor. FASEB Journal, 2015, 29, 4758-4759.	0.5	0

MICHAEL A PORTELLI

#	Article	IF	CITATIONS
19	Cigarette Smoke and the Induction of Urokinase Plasminogen Activator ReceptorIn Vivo: Selective Contribution of Isoforms to Bronchial Epithelial Phenotype. American Journal of Respiratory Cell and Molecular Biology, 2015, 53, 174-183.	2.9	6
20	Genetic risk factors for the development of allergic disease identified by genomeâ€wide association. Clinical and Experimental Allergy, 2015, 45, 21-31.	2.9	158
21	Urokinase plasminogen activator receptor variants drive distinct phenotypes in the bronchial epithelium. , 2015, , .		0
22	Differential expression of uPAR in cultured bronchial epithelial cells from asthma patients. , 2015, , .		0
23	Genomeâ€wide protein QTL mapping identifies human plasma kallikrein as a postâ€ŧranslational regulator of serum uPAR levels. FASEB Journal, 2014, 28, 923-934.	0.5	29
24	Whole Exome Re-Sequencing Implicates CCDC38 and Cilia Structure and Function in Resistance to Smoking Related Airflow Obstruction. PLoS Genetics, 2014, 10, e1004314.	3.5	29
25	Genetic basis for personalized medicine in asthma. Expert Review of Respiratory Medicine, 2012, 6, 223-236.	2.5	39
26	GWAS Identifies That A Human Plasma Kallikrein Single Nucleotide Polymorphism Regulates Serum PLAUR Levels In Asthma And COPD. , 2012, , .		0
27	Cigarette Smoke Modulates PLAUR Expression In Bronchial Epithelial Cells Via A 3`UTR Mechanism. , 2012, , .		0
28	Investigating Soluble Cleaved Upar As A Biomarker For COPD. , 2011, , .		0

Investigating Soluble Cleaved Upar As A Biomarker For COPD. , 2011, , . 28