Kevin Garcia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7574031/publications.pdf

Version: 2024-02-01

430843 395678 1,981 33 18 33 h-index citations g-index papers 37 37 37 2338 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Symbiotic Nitrogen Fixation and the Challenges to Its Extension to Nonlegumes. Applied and Environmental Microbiology, 2016, 82, 3698-3710.	3.1	443
2	Take a Trip Through the Plant and Fungal Transportome of Mycorrhiza. Trends in Plant Science, 2016, 21, 937-950.	8.8	192
3	The role of mycorrhizal associations in plant potassium nutrition. Frontiers in Plant Science, 2014, 5, 337.	3.6	164
4	Biotrophic transportome in mutualistic plant–fungal interactions. Mycorrhiza, 2013, 23, 597-625.	2.8	157
5	Molecular signals required for the establishment and maintenance of ectomycorrhizal symbioses. New Phytologist, 2015, 208, 79-87.	7.3	139
6	A proteomic atlas of the legume Medicago truncatula and its nitrogen-fixing endosymbiont Sinorhizobium meliloti. Nature Biotechnology, 2016, 34, 1198-1205.	17.5	133
7	The Ectomycorrhizal Fungus <i>Laccaria bicolor</i> Produces Lipochitooligosaccharides and Uses the Common Symbiosis Pathway to Colonize <i>Populus</i> Roots. Plant Cell, 2019, 31, 2386-2410.	6.6	73
8	Physiological Responses and Gene Co-Expression Network of Mycorrhizal Roots under K ⁺ Deprivation. Plant Physiology, 2017, 173, 1811-1823.	4.8	69
9	Lipo-chitooligosaccharides as regulatory signals of fungal growth and development. Nature Communications, 2020, 11, 3897.	12.8	65
10	Phosphorus Transport in Mycorrhiza: How Far Are We?. Trends in Plant Science, 2019, 24, 794-801.	8.8	64
11	Nutrient demand and fungal access to resources control the carbon allocation to the symbiotic partners in tripartite interactions of <scp><i>Medicago truncatula</i></scp> . Plant, Cell and Environment, 2019, 42, 270-284.	5 . 7	61
12	Potassium nutrition of ectomycorrhizal <i><scp>P</scp>inus pinaster</i> : overexpression of the <i><scp>H</scp>ebeloma cylindrosporum <scp>H</scp>c</i> <scp>T</scp> rk1 transporter affects the translocation of both <scp>K</scp> ⁺ and phosphorus in the host plant. New Phytologist, 2014, 201, 951-960.	7.3	56
13	Harnessing Soil Microbes to Improve Plant Phosphate Efficiency in Cropping Systems. Agronomy, 2019, 9, 127.	3.0	48
14	The ectomycorrhizal contribution to tree nutrition. Advances in Botanical Research, 2019, , 77-126.	1.1	44
15	The <i>Hebeloma cylindrosporum</i> HcPT2 Pi transporter plays a key role in ectomycorrhizal symbiosis. New Phytologist, 2018, 220, 1185-1199.	7.3	35
16	Promoter-dependent expression of the fungal transporter HcPT1.1 under Pi shortage and its spatial localization in ectomycorrhiza. Fungal Genetics and Biology, 2013, 58-59, 53-61.	2.1	28
17	Plant potassium nutrition in ectomycorrhizal symbiosis: properties and roles of the three fungal TOK potassium channels in <i>Hebeloma cylindrosporum</i> . Environmental Microbiology, 2018, 20, 1873-1887.	3.8	26
18	Micronutrient transport in mycorrhizal symbiosis; zinc steals the show. Fungal Biology Reviews, 2020, 34, 1-9.	4.7	26

#	Article	IF	CITATIONS
19	Mycorrhizal Symbiosis for Better Adaptation of Trees to Abiotic Stress Caused by Climate Change in Temperate and Boreal Forests. Frontiers in Forests and Global Change, 2021, 4, .	2.3	24
20	Benefits provided by four ectomycorrhizal fungi to Pinus taeda under different external potassium availabilities. Mycorrhiza, 2021, 31, 755-766.	2.8	16
21	<i>Hc</i> TOK1 participates in the maintenance of K ⁺ homeostasis in the ectomycorrhizal fungus <i>Hebeloma cylindrosporum</i> , which is essential for the symbiotic K ⁺ nutrition of <i>Pinus pinaster</i> . Plant Signaling and Behavior, 2018, 13, e1480845.	2.4	14
22	Physiological and transcriptomic response of Medicago truncatula to colonization by high- or low-benefit arbuscular mycorrhizal fungi. Mycorrhiza, 2022, 32, 281-303.	2.8	12
23	HcPT1.2 participates in Pi acquisition in <i>Hebeloma cylindrosporum</i> external hyphae of ectomycorrhizas under high and low phosphate conditions. Plant Signaling and Behavior, 2018, 13, e1525997.	2.4	11
24	Fungal Shaker-like channels beyond cellular K+ homeostasis: A role in ectomycorrhizal symbiosis between Hebeloma cylindrosporum and Pinus pinaster. PLoS ONE, 2020, 15, e0242739.	2.5	10
25	The Role of Plant Transporters in Mycorrhizal Symbioses. Advances in Botanical Research, 2018, , 303-342.	1.1	9
26	Split down the middle: studying arbuscular mycorrhizal and ectomycorrhizal symbioses using split-root assays. Journal of Experimental Botany, 2022, 73, 1288-1300.	4.8	9
27	Beneficial Plant Microbe Interactions and Their Effect on Nutrient Uptake, Yield, and Stress Resistance of Soybeans. , 0, , .		7
28	Role of cytosolic, tyrosineâ€insensitive prephenate dehydrogenase in <i>MedicagoÂtruncatula</i> . Plant Direct, 2020, 4, e00218.	1.9	7
29	ACORN Review: NPK fertilizer use in loblolly pine plantations: Who are we really feeding?. Forest Ecology and Management, 2022, 520, 120393.	3.2	7
30	Comparative Analysis of Secretomes from Ectomycorrhizal Fungi with an Emphasis on Small-Secreted Proteins. Frontiers in Microbiology, 2016, 7, 1734.	3.5	6
31	Polymorphic responses of Medicago truncatula accessions to potassium deprivation. Plant Signaling and Behavior, 2017, 12, e1307494.	2.4	5
32	Editorial: Importance of Root Symbiomes for Plant Nutrition: New Insights, Perspectives and Future Challenges. Frontiers in Plant Science, 2020, 11, 594.	3.6	4
33	Mycorrhiza-mediated potassium transport in Medicago truncatula can be evaluated by using rubidium as a proxy. Plant Science, 2022, 322, 111364.	3.6	1