

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7573433/publications.pdf Version: 2024-02-01

		61945	102432
146	5,425	43	66
papers	citations	h-index	g-index
151 all docs	151 docs citations	151 times ranked	5738 citing authors

Ιειλλει

#	Article	IF	CITATIONS
1	Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nature Biotechnology, 2015, 33, 277-284.	9.4	532
2	Flexible and High-Voltage Coaxial-Fiber Aqueous Rechargeable Zinc-Ion Battery. Nano Letters, 2019, 19, 4035-4042.	4.5	202
3	Advanced Multimaterial Electronic and Optoelectronic Fibers and Textiles. Advanced Materials, 2019, 31, e1802348.	11.1	200
4	Thermally drawn advanced functional fibers: New frontier of flexible electronics. Materials Today, 2020, 35, 168-194.	8.3	153
5	High-performance, flexible, and ultralong crystalline thermoelectric fibers. Nano Energy, 2017, 41, 35-42.	8.2	132
6	Freestanding Metal–Organic Frameworks and Their Derivatives: An Emerging Platform for Electrochemical Energy Storage and Conversion. Chemical Reviews, 2022, 122, 10087-10125.	23.0	126
7	Touchpoint-Tailored Ultrasensitive Piezoresistive Pressure Sensors with a Broad Dynamic Response Range and Low Detection Limit. ACS Applied Materials & Interfaces, 2019, 11, 2551-2558.	4.0	108
8	All-in-one stretchable coaxial-fiber strain sensor integrated with high-performing supercapacitor. Energy Storage Materials, 2020, 25, 124-130.	9.5	100
9	Silicon-in-silica spheres via axial thermal gradient in-fibre capillary instabilities. Nature Communications, 2013, 4, 2216.	5.8	90
10	Allâ€Metalâ€Organic Frameworkâ€Derived Battery Materials on Carbon Nanotube Fibers for Wearable Energyâ€Storage Device. Advanced Science, 2018, 5, 1801462.	5.6	89
11	Microfluidic directional emission control of an azimuthally polarized radial fibre laser. Nature Photonics, 2012, 6, 229-233.	15.6	80
12	Mechanically Durable and Flexible Thermoelectric Films from PEDOT:PSS/PVA/Bi _{0.5} Sb _{1.5} Te ₃ Nanocomposites. Advanced Electronic Materials, 2017, 3, 1600554.	2.6	80
13	Advanced Multifunctional Aqueous Rechargeable Batteries Design: From Materials and Devices to Systems. Advanced Materials, 2022, 34, e2104327.	11.1	78
14	Controlled fragmentation of multimaterial fibres and films via polymer cold-drawing. Nature, 2016, 534, 529-533.	13.7	75
15	Elastic and Stretchable Functional Fibers: A Review of Materials, Fabrication Methods, and Applications. Advanced Fiber Materials, 2021, 3, 1-13.	7.9	74
16	A one-dimensional channel self-standing MOF cathode for ultrahigh-energy-density flexible Ni–Zn batteries. Journal of Materials Chemistry A, 2019, 7, 27217-27224.	5.2	73
17	Binder-free NaTi2(PO4)3 anodes for high-performance coaxial-fiber aqueous rechargeable sodium-ion batteries. Nano Energy, 2020, 67, 104212.	8.2	70
18	Nickel metal–organic framework nanosheets as novel binder-free cathode for advanced fibrous aqueous rechargeable Ni–Zn battery. Journal of Materials Chemistry A, 2020, 8, 3262-3269.	5.2	68

#	Article	IF	CITATIONS
19	Self-powered multifunctional sensing based on super-elastic fibers by soluble-core thermal drawing. Nature Communications, 2021, 12, 1416.	5.8	68
20	Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference. Applied Physics Letters, 2016, 109, .	1.5	67
21	Highly sensitive gas refractometers based on optical microfiber modal interferometers operating at dispersion turning point. Optics Express, 2018, 26, 29148.	1.7	66
22	Continuously tunable all-in-fiber devices based on thermal and electrical control of negative dielectric anisotropy liquid crystal photonic bandgap fibers. Applied Optics, 2009, 48, 497.	2.1	62
23	Crystalline silicon core fibres from aluminium core preforms. Nature Communications, 2015, 6, 6248.	5.8	62
24	Ultrasensitive Exhaled Breath Sensors Based on Antiâ€Resonant Hollow Core Fiber with In Situ Grown ZnOâ€Bi ₂ O ₃ Nanosheets. Advanced Materials Interfaces, 2021, 8, 2001978.	1.9	61
25	Spectral Characteristics and Ultrahigh Sensitivities Near the Dispersion Turning Point of Optical Microfiber Couplers. Journal of Lightwave Technology, 2018, 36, 2409-2415.	2.7	60
26	Engineering MoS ₂ Nanosheets on Spindle‣ike αâ€Fe ₂ O ₃ as Highâ€Performance Core–Shell Pseudocapacitive Anodes for Fiberâ€Shaped Aqueous Lithiumâ€Ion Capacitors. Advanced Functional Materials, 2020, 30, 2003967.	7.8	60
27	Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing. Sensors and Actuators B: Chemical, 2016, 223, 195-201.	4.0	58
28	Hybrid Graphene/Gold Plasmonic Fiberâ€Optic Biosensor. Advanced Materials Technologies, 2017, 2, 1600185.	3.0	58
29	Singleâ€Crystal SnSe Thermoelectric Fibers via Laserâ€Induced Directional Crystallization: From 1D Fibers to Multidimensional Fabrics. Advanced Materials, 2020, 32, e2002702.	11.1	57
30	Ultrasensitive measurement of gas refractive index using an optical nanofiber coupler. Optics Letters, 2018, 43, 679.	1.7	56
31	Birefringence induced Vernier effect in optical fiber modal interferometers for enhanced sensing. Sensors and Actuators B: Chemical, 2018, 275, 16-24.	4.0	56
32	Ordered and Atomically Perfect Fragmentation of Layered Transition Metal Dichalcogenides <i>via</i> Mechanical Instabilities. ACS Nano, 2017, 11, 9191-9199.	7.3	53
33	Performance Enhancement of Triâ€Cation and Dualâ€Anion Mixed Perovskite Solar Cells by Au@SiO ₂ Nanoparticles. Advanced Functional Materials, 2017, 27, 1606545.	7.8	52
34	Optoelectronic Fibers via Selective Amplification of Inâ€Fiber Capillary Instabilities. Advanced Materials, 2017, 29, 1603033.	11.1	52
35	Ultra-sensitive chemical and biological analysis <i>via</i> specialty fibers with built-in microstructured optofluidic channels. Lab on A Chip, 2018, 18, 655-661.	3.1	52
36	Thermal tunability of photonic bandgaps in liquid crystal infiltrated microstructured polymer optical fibers. Optics Express, 2009, 17, 19356.	1.7	50

#	Article	IF	CITATIONS
37	In-line optofluidic refractive index sensing in a side-channel photonic crystal fiber. Optics Express, 2016, 24, 27674.	1.7	50
38	Ultraflexible Glassy Semiconductor Fibers for Thermal Sensing and Positioning. ACS Applied Materials & Interfaces, 2019, 11, 2441-2447.	4.0	50
39	Highly Oriented Electrospun P(VDFâ€₹rFE) Fibers via Mechanical Stretching for Wearable Motion Sensing. Advanced Materials Technologies, 2018, 3, 1800033.	3.0	46
40	Ultra-endurance coaxial-fiber stretchable sensing systems fully powered by sunlight. Nano Energy, 2019, 60, 267-274.	8.2	46
41	Crack-Across-Pore Enabled High-Performance Flexible Pressure Sensors for Deep Neural Network Enhanced Sensing and Human Action Recognition. ACS Nano, 2022, 16, 8358-8369.	7.3	46
42	Compact Design of an Electrically Tunable and Rotatable Polarizer Based on a Liquid Crystal Photonic Bandgap Fiber. IEEE Photonics Technology Letters, 2009, 21, 1633-1635.	1.3	45
43	Electron-Rich Two-Dimensional Molybdenum Trioxides for Highly Integrated Plasmonic Biosensing. ACS Photonics, 2018, 5, 347-352.	3.2	45
44	Controlled Fragmentation of Single-Atom-Thick Polycrystalline Graphene. Matter, 2020, 2, 666-679.	5.0	45
45	Flexible Piezoelectric Fibers for Acoustic Sensing and Positioning. Advanced Electronic Materials, 2017, 3, 1600449.	2.6	44
46	NaTi2(PO4)3 hollow nanoparticles encapsulated in carbon nanofibers as novel anodes for flexible aqueous rechargeable sodium-ion batteries. Nano Energy, 2021, 82, 105764.	8.2	43
47	Integrating liquid crystal based optical devices in photonic crystal fibers. Optical and Quantum Electronics, 2007, 39, 1009-1019.	1.5	42
48	One-step synthesis of cyclodextrin-capped gold nanoparticles for ultra-sensitive and highly-integrated plasmonic biosensors. Sensors and Actuators B: Chemical, 2019, 286, 429-436.	4.0	42
49	High-performance zero-standby-power-consumption-under-bending pressure sensors for artificial reflex arc. Nano Energy, 2020, 73, 104743.	8.2	40
50	Rational Construction of Selfâ€Standing Sulfurâ€Doped Fe ₂ O ₃ Anodes with Promoted Energy Storage Capability for Wearable Aqueous Rechargeable NiCoâ€Fe Batteries. Advanced Energy Materials, 2020, 10, 2001064.	10.2	39
51	All Binder-Free Electrodes for High-Performance Wearable Aqueous Rechargeable Sodium-Ion Batteries. Nano-Micro Letters, 2019, 11, 101.	14.4	38
52	Large-scale synthesis of single-crystalline self-standing SnSe ₂ nanoplate arrays for wearable gas sensors. Nanotechnology, 2018, 29, 455501.	1.3	37
53	Conversion Synthesis of Self‣tanding Potassium Zinc Hexacyanoferrate Arrays as Cathodes for Highâ€Voltage Flexible Aqueous Rechargeable Sodiumâ€Ion Batteries. Small, 2019, 15, e1905115.	5.2	37
54	Hierarchical Network Enabled Flexible Textile Pressure Sensor with Ultrabroad Response Range and Highâ€Temperature Resistance. Advanced Science, 2022, 9, e2105738.	5.6	37

#	Article	IF	CITATIONS
55	Tunable 3D light trapping architectures based on self-assembled SnSe ₂ nanoplate arrays for ultrasensitive SERS detection. Journal of Materials Chemistry C, 2019, 7, 10179-10186.	2.7	36
56	Designer patterned functional fibers via direct imprinting in thermal drawing. Nature Communications, 2020, 11, 3842.	5.8	36
57	On-chip tunable long-period grating devices based on liquid crystal photonic bandgap fibers. Optics Letters, 2009, 34, 3818.	1.7	34
58	Electrically tunable bandpass filter using solid-core photonic crystal fibers filled with multiple liquid crystals. Optics Letters, 2010, 35, 1608.	1.7	34
59	Direct Atomic-Level Observation and Chemical Analysis of ZnSe Synthesized by <i>in Situ</i> High-Throughput Reactive Fiber Drawing. Nano Letters, 2013, 13, 975-979.	4.5	34
60	The Recent Progress of MEMS/NEMS Resonators. Micromachines, 2021, 12, 724.	1.4	33
61	Fiber Optofluidic Microlasers: Structures, Characteristics, and Applications. Laser and Photonics Reviews, 2022, 16, .	4.4	32
62	Design and analysis of surface plasmon resonance sensor based on high-birefringent microstructured optical fiber. Journal of Optics (United Kingdom), 2016, 18, 065005.	1.0	31
63	All-Metal Phosphide Electrodes for High-Performance Quasi-Solid-State Fiber-Shaped Aqueous Rechargeable Ni–Fe Batteries. ACS Applied Materials & Interfaces, 2020, 12, 12801-12808.	4.0	30
64	Highly Sensitive and Wide Linear-Response Pressure Sensors Featuring Zero Standby Power Consumption under Bending Conditions. ACS Applied Materials & Interfaces, 2020, 12, 19563-19571.	4.0	30
65	Roadmap for flexible solid-state aqueous batteries: From materials engineering and architectures design to mechanical characterizations. Materials Science and Engineering Reports, 2022, 148, 100671.	14.8	30
66	Tunable and rotatable polarization controller using photonic crystal fiber filled with liquid crystal. Applied Physics Letters, 2010, 96, .	1.5	29
67	Laserâ€Induced Inâ€Fiber Fluid Dynamical Instabilities for Precise and Scalable Fabrication of Spherical Particles. Advanced Functional Materials, 2017, 27, 1703245.	7.8	29
68	In-fibre particle manipulation and device assembly via laser induced thermocapillary convection. Nature Communications, 2019, 10, 5206.	5.8	29
69	Fabrication and characterization of fibers with built-in liquid crystal channels and electrodes for transverse incident-light modulation. Applied Physics Letters, 2012, 101, .	1.5	28
70	Flexible quasi-solid-state 2.4 V aqueous asymmetric microsupercapacitors with ultrahigh energy density. Journal of Materials Chemistry A, 2018, 6, 20145-20151.	5.2	28
71	Azimuthally Polarized Radial Emission from a Quantum Dot Fiber Laser. ACS Photonics, 2016, 3, 2275-2279.	3.2	27
72	Achieving ultrahigh-energy-density in flexible and lightweight all-solid-state internal asymmetric tandem 6.6â€V all-in-one supercapacitors. Energy Storage Materials, 2020, 25, 893-902.	9.5	27

#	Article	IF	CITATIONS
73	Recent Advancement of Anti-Resonant Hollow-Core Fibers for Sensing Applications. Photonics, 2021, 8, 128.	0.9	26
74	Flexible and High Performance Piezoresistive Pressure Sensors Based on Hierarchical Flower-Shaped SnSe ₂ Nanoplates. ACS Applied Energy Materials, 2019, 2, 2803-2809.	2.5	25
75	In-Fiber Structured Particles and Filament Arrays from the Perspective of Fluid Instabilities. Advanced Fiber Materials, 2020, 2, 1-12.	7.9	25
76	Biased liquid crystal infiltrated photonic bandgap fiber. Optics Express, 2009, 17, 4442.	1.7	24
77	Fully Solarâ€Powered Uninterrupted Overall Waterâ€Splitting Systems. Advanced Functional Materials, 2019, 29, 1808889.	7.8	24
78	Hybrid Plasmonic Fiber-Optic Sensors. Sensors, 2020, 20, 3266.	2.1	24
79	Semiconductor core fibres: materials science in a bottle. Nature Communications, 2021, 12, 3990.	5.8	24
80	Optically fed microwave true-time delay based on a compact liquid-crystal photonic-bandgap-fiber device. Optics Letters, 2009, 34, 2757.	1.7	23
81	Highâ€Capacity Ironâ€Based Anodes for Aqueous Secondary Nickelâ^'Iron Batteries: Recent Progress and Prospects. ChemElectroChem, 2021, 8, 274-290.	1.7	23
82	Magnetic field sensor based on magnetic-fluid-coated long-period fiber grating. Journal of Optics (United Kingdom), 2015, 17, 065402.	1.0	22
83	Combination of micro-scanning mirrors and multi-mode fibers for speckle reduction in high lumen laser projector applications. Optics Express, 2017, 25, 3795.	1.7	22
84	Mid-infrared sensing of molecular vibrational modes with tunable graphene plasmons. Optics Letters, 2017, 42, 2066.	1.7	22
85	Thermoelectric Properties of Cu2Se Nano-Thin Film by Magnetron Sputtering. Materials, 2021, 14, 2075.	1.3	22
86	Rapid SERS monitoring of lipidâ€peroxidationâ€derived protein modifications in cells using photonic crystal fiber sensor. Journal of Biophotonics, 2016, 9, 32-37.	1.1	21
87	Phase-matching and Peak Nonlinearity Enhanced Third-Harmonic Generation in Graphene Plasmonic Coupler. Physical Review Applied, 2019, 11, .	1.5	21
88	Thermally drawn multifunctional fibers: Toward the next generation of information technology. InformaĂnÃ-Materiály, 2022, 4, .	8.5	21
89	The improvement of thermoelectric property of bulk ZnO via ZnS addition: Influence of intrinsic defects. Ceramics International, 2018, 44, 6461-6465.	2.3	20
90	Electrosprayed TiO ₂ nanoporous hemispheres for enhanced electron transport and device performance of formamidinium based perovskite solar cells. Nanoscale, 2017, 9, 412-420.	2.8	19

#	Article	IF	CITATIONS
91	Flexible Tactile Sensor Based on Patterned Ag-Nanofiber Electrodes through Electrospinning. Sensors, 2021, 21, 2413.	2.1	18
92	Formation of ultra-flexible, conformal, and nano-patterned photonic surfaces <i>via</i> polymer cold-drawing. Journal of Materials Chemistry C, 2018, 6, 4649-4657.	2.7	17
93	Advanced Multi-Material Optoelectronic Fibers: A Review. Journal of Lightwave Technology, 2021, 39, 3836-3845.	2.7	16
94	Recent Advances in Optical Fiber Enabled Radiation Sensors. Sensors, 2022, 22, 1126.	2.1	16
95	Stretchable <scp>fiberâ€shaped</scp> aqueous aluminum ion batteries. EcoMat, 2022, 4, .	6.8	14
96	Low loss liquid crystal photonic bandgap fiber in the near-infrared region. Optical Review, 2011, 18, 114-116.	1.2	13
97	High-throughput corrosion quantification in varied microenvironments. Corrosion Science, 2014, 88, 481-486.	3.0	13
98	Ultrawideband Surface Enhanced Raman Scattering in Hybrid Graphene Fragmentedâ€Gold Substrates via Coldâ€Etching. Advanced Optical Materials, 2019, 7, 1900905.	3.6	13
99	Ultrasensitive Broadband Refractometer Based on Single Stress-Applying Fiber at Dispersion Turning Point. Journal of Lightwave Technology, 2021, 39, 2528-2535.	2.7	13
100	Liquid crystal parameter analysis for tunable photonic bandgap fiber devices. Optics Express, 2010, 18, 4074.	1.7	12
101	Electrically tunable Yb-doped fiber laser based on a liquid crystal photonic bandgap fiber device. Optics Express, 2010, 18, 8229.	1.7	10
102	Hollow rice grain-shaped TiO2 nanostructures for high-efficiency and large-area perovskite solar cells. Solar Energy Materials and Solar Cells, 2019, 191, 389-398.	3.0	10
103	Advanced Thermally Drawn Multimaterial Fibers: Structure-Enabled Functionalities. Advanced Devices & Instrumentation, 2021, 2021, .	4.0	10
104	Wafer‣cale Growth of Vertical‣tructured SnSe ₂ Nanosheets for Highly Sensitive, Fastâ€Response UV–Vis–NIR Broadband Photodetectors. Advanced Optical Materials, 2022, 10, .	3.6	10
105	Recent progress of fiber-based transistors: materials, structures and applications. Frontiers of Optoelectronics, 2022, 15, 1.	1.9	10
106	Extremely High-Efficiency Coupling Method for Hollow-Core Photonic Crystal Fiber. IEEE Photonics Journal, 2017, 9, 1-8.	1.0	9
107	Pristine graphene oxide film-based contactless actuators driven by electrostatic forces. Journal of Materials Chemistry C, 2017, 5, 9534-9539.	2.7	9
108	Preparation and transmission of low-loss azimuthally polarized pure single mode in multimode photonic band gap fibers. Optics Express, 2012, 20, 6029.	1.7	8

#	Article	IF	CITATIONS
10	⁹ In-Fiber Production of Laser-Structured Stress-Mediated Semiconductor Particles. ACS Applied Materials & Interfaces, 2019, 11, 45330-45337.	4.0	8
11	Compact Robust Vector Bending Sensor Based on Single Stress-Applying Fiber. IEEE Sensors Journal, 2021, 21, 9165-9170.	2.4	8
11	Efficient phase-matched third harmonic generation in a metal-clad plasmonic double-slot waveguide. Journal of Optics (United Kingdom), 2015, 17, 025506.	1.0	7
11:	 Inorganic Thermoelectric Fibers: A Review of Materials, Fabrication Methods, and Applications. Sensors, 2021, 21, 3437. 	2.1	7
11	 Integrated liquid crystal photonic bandgap fiber devices. Frontiers of Optoelectronics, 2016, 9, 466-482. 	1.9	6
11_{-}	Third Harmonic Generation With the Effect of Nonlinear Loss. Journal of Lightwave Technology, 2016, 34, 1274-1280.	2.7	6
11	Recent Advances and Prospects of Fiberâ€Shaped Rechargeable Aqueous Alkaline Batteries. Advanced Energy and Sustainability Research, 2021, 2, 2100060.	2.8	5
11	⁶ Micro/nanofiber fabrication technologies for wearable sensors: a review. Journal of Micromechanics and Microengineering, 2022, 32, 064002.	1.5	5
11'	Selenium Vacancies and Synergistic Effect of Near- and Far-Field-Enabled Ultrasensitive Surface-Enhanced Raman-Scattering-Active Substrates for Malaria Detection. Journal of Physical Chemistry Letters, 2022, 13, 1453-1463.	2.1	4
113	8 Tunable resonant graphene plasmons for mid-infrared biosensing. Optics Express, 2016, 24, 26241.	1.7	3
11	A stable and long-lasting concentration cell based on a reduced graphene oxide membrane and natural resource electrolyte. Journal of Materials Chemistry A, 2017, 5, 21130-21133.	5.2	3
12	o Special Issue "Fiber Optic Sensors and Applications― An Overview. Sensors, 2020, 20, 3400.	2.1	3
12	High-performance x-ray source based on graphene oxide-coated Cu2S nanowires grown on copper film. Nanotechnology, 2020, 31, 485202.	1.3	3
12	2 Electrically Tunable Bandpass Filter Based on Liquid Crystal Photonic Bandgap Fibers. , 2010, , .		3
12	High thermal and electrical tunability of negative dielectric liquid crystal photonic bandgap fibers. , 2008, , .		2
12	4 Highly sensitive magnetic field sensor using long-period fiber grating. , 2015, , .		2
12	 Highâ€Capacity Ironâ€Based Anodes for Aqueous Secondary Nickel–Iron Batteries: Recent Progress and Prospects. ChemElectroChem, 2021, 8, 273-273. 	1.7	2
12	 Progress in Metafibers for Sustainable Radiative Cooling and Prospects of Achieving Thermally Drawn Metafibers. Advanced Energy and Sustainability Research, 2022, 3, 2100168. 	2.8	2

#	Article	IF	CITATIONS
127	Two-dimensional layered architecture constructing energy and phonon blocks for enhancing thermoelectric performance of InSb. Science China Materials, 2022, 65, 1353.	3.5	2
128	Self-assembled on-chip spherical-cap-shaped microresonators for high sensitivity temperature sensing. Optics Express, 2016, 24, 26948.	1.7	1
129	Ultralow thermal conductivity of silicon nanowire arrays by molecular dynamics simulation. Materials Research Express, 2017, 4, 025029.	0.8	1
130	Compact Optically-fed Microwave True-time Delay Using Liquid Crystal Photonic Bandgap Fiber Device. , 2009, , .		1
131	Laser Induced In-fiber Capillary Instabilities for Precise and Scalable Microsphere Fabrication. , 2016, , .		1
132	Mechanics of controlled fragmentation by cold drawing. Journal of the Mechanics and Physics of Solids, 2021, 159, 104726.	2.3	1
133	Electrically tunable liquid crystal photonic bandgap fiber laser. , 2010, , .		Ο
134	All-in-Fiber Liquid Crystal Cell. , 2012, , .		0
135	The Numerical Modeling of 3D Microfiber Couplers and Resonators. IEEE Photonics Technology Letters, 2016, 28, 1707-1710.	1.3	0
136	Wearable Electronics: Mechanically Durable and Flexible Thermoelectric Films from PEDOT:PSS/PVA/Bi _{0.5} Sb _{1.5} Te ₃ Nanocomposites (Adv. Electron.) Tj ETQ4	q0 0.0 rgB	BT /@verlock 10
137	Particles: Laserâ€Induced Inâ€Fiber Fluid Dynamical Instabilities for Precise and Scalable Fabrication of Spherical Particles (Adv. Funct. Mater. 43/2017). Advanced Functional Materials, 2017, 27, .	7.8	0
138	High-Q silicon microsphere whispering gallery mode resonator fabricated by laser induced in-fiber capillary instability. , 2017, , .		0
139	Feature issue introduction: Multimaterial and Multifunctional Optical Fibers. Optical Materials Express, 2017, 7, 1906.	1.6	0
140	Liquid Crystal Photonic Bandgap Fiber Based Compact Electrically Tunable Long Period Grating Device. , 2009, , .		0
141	Multimaterial Functional Fibers. , 2013, , .		0
142	Multimaterial Fibers: from Photonics to Biology and Nanotechnology. , 2015, , .		0
143	Quantum Dots Fiber Laser with Azimuthally Polarized Radial Emission. , 2016, , .		0
144	Optoelectronic Fibers. , 2018, , 1-16.		0

Lei	1	λ)	F
		~	

#	Article	IF	CITATIONS
145	Optoelectronic Fibers. , 2019, , 1335-1350.		0

146 Recent Development of All-fiber Optoelectronics. , 2019, , .