Vanessa Sperandio

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7573413/vanessa-sperandio-publications-by-year.pdf

Version: 2024-04-11

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

150	11,260	51	105
papers	citations	h-index	g-index
162 ext. papers	13,062 ext. citations	9.2 avg, IF	6.78 L-index

#	Paper	IF	Citations
150	IgG Binds Serine Protease EspP and Protects Mice From O157:H7 Infection <i>Frontiers in Immunology</i> , 2022 , 13, 807959	8.4	
149	The Canonical Long-Chain Fatty Acid Sensing Machinery Processes Arachidonic Acid To Inhibit Virulence in Enterohemorrhagic Escherichia coli. <i>MBio</i> , 2021 , 12,	7.8	6
148	l-Arginine sensing regulates virulence gene expression and disease progression in enteric pathogens. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 12387-12393	11.5	10
147	EspFu-Mediated Actin Assembly Enhances Enteropathogenic Adherence and Activates Host Cell Inflammatory Signaling Pathways. <i>MBio</i> , 2020 , 11,	7.8	8
146	The Serotonin Neurotransmitter Modulates Virulence of Enteric Pathogens. <i>Cell Host and Microbe</i> , 2020 , 28, 41-53.e8	23.4	33
145	Characterization of Autoinducer-3 Structure and Biosynthesis in. ACS Central Science, 2020, 6, 197-206	16.8	42
144	Genomic Properties and Temporal Analysis of the Interaction of an Invasive With Epithelial Cells. <i>Frontiers in Cellular and Infection Microbiology</i> , 2020 , 10, 571088	5.9	1
143	Diet-derived galacturonic acid regulates virulence and intestinal colonization in enterohaemorrhagic Escherichia coli and Citrobacter rodentium. <i>Nature Microbiology</i> , 2020 , 5, 368-378	26.6	18
142	Endocannabinoids Inhibit the Induction of Virulence in Enteric Pathogens. <i>Cell</i> , 2020 , 183, 650-665.e15	56.2	12
141	Bacterial signaling as an antimicrobial target. Current Opinion in Microbiology, 2020, 57, 78-86	7.9	12
140	Indole Signaling at the Host-Microbiota-Pathogen Interface. <i>MBio</i> , 2019 , 10,	7.8	62
139	Quorum Sensing and the Gut Microbiome 2019 , 151-169		4
138	Taming the Beast: Interplay between Gut Small Molecules and Enteric Pathogens. <i>Infection and Immunity</i> , 2019 , 87,	3.7	9
137	Enterococcus faecalis Enhances Expression and Activity of the Enterohemorrhagic Escherichia coli Type III Secretion System. <i>MBio</i> , 2019 , 10,	7.8	2
136	Complete Genome Sequence of Escherichia albertii Strain 1551-2, a Potential Extracellular and Intracellular Pathogen. <i>Genome Announcements</i> , 2018 , 6,		5
135	The QseG Lipoprotein Impacts the Virulence of Enterohemorrhagic Escherichia coli and Citrobacter rodentium and Regulates Flagellar Phase Variation in Salmonella enterica Serovar Typhimurium. <i>Infection and Immunity</i> , 2018 , 86,	3.7	6
134	Enterohemorrhagic Escherichia coli outwits hosts through sensing small molecules. <i>Current Opinion in Microbiology</i> , 2018 , 41, 83-88	7.9	21

(2015-2018)

133	Bacteriophage Transcription Factor Cro Regulates Virulence Gene Expression in Enterohemorrhagic Escherichia coli. <i>Cell Host and Microbe</i> , 2018 , 23, 607-617.e6	23.4	22
132	Microbiota and Pathogen Proteases Modulate Type III Secretion Activity in Enterohemorrhagic Escherichia coli. <i>MBio</i> , 2018 , 9,	7.8	14
131	Redox, amino acid, and fatty acid metabolism intersect with bacterial virulence in the gut. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E10712-E10	7 19 .5	20
130	Pathogens' adaptation to the human host. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 9342-9343	11.5	11
129	Genetic and Mechanistic Analyses of the Periplasmic Domain of the Enterohemorrhagic Escherichia coli QseC Histidine Sensor Kinase. <i>Journal of Bacteriology</i> , 2017 , 199,	3.5	15
128	Take Your Pick: Vitamins and Microbiota Facilitate Pathogen Clearance. <i>Cell Host and Microbe</i> , 2017 , 21, 130-131	23.4	3
127	Bacterial Chat: Intestinal Metabolites and Signals in Host-Microbiota-Pathogen Interactions. <i>Infection and Immunity</i> , 2017 , 85,	3.7	50
126	Escherichia albertii, a novel human enteropathogen, colonizes rat enterocytes and translocates to extra-intestinal sites. <i>PLoS ONE</i> , 2017 , 12, e0171385	3.7	16
125	Catabolite and Oxygen Regulation of Enterohemorrhagic Escherichia coli Virulence. <i>MBio</i> , 2016 , 7,	7.8	33
124	Bacterial Adrenergic Sensors Regulate Virulence of Enteric Pathogens in the Gut. <i>MBio</i> , 2016 , 7,	7.8	60
123	What a Dinner Party! Mechanisms and Functions of Interkingdom Signaling in Host-Pathogen Associations. <i>MBio</i> , 2016 , 7, e01748	7.8	68
122	The Epinephrine/Norepinephrine/Autoinducer-3 Interkingdom Signaling System in Escherichia coli O157:H7. <i>Advances in Experimental Medicine and Biology</i> , 2016 , 874, 247-61	3.6	26
121	Interactions between the microbiota and pathogenic bacteria in the gut. <i>Nature</i> , 2016 , 535, 85-93	50.4	627
120	In vivo influence of in vitro up-regulated genes in the virulence of an APEC strain associated with swollen head syndrome. <i>Avian Pathology</i> , 2016 , 45, 94-105	2.4	5
119	Bacterial Reductionism: Host Thiols Enhance Virulence. <i>Cell Host and Microbe</i> , 2015 , 18, 7-8	23.4	1
118	The efficacy of immediate versus delayed antibiotic administration on bacterial growth and biofilm production of selected strains of uropathogenic Escherichia coli and Pseudomonas aeruginosa. International Braz J Urol: Official Journal of the Brazilian Society of Urology, 2015, 41, 67-77	2	7
117	Frenemies: Signaling and Nutritional Integration in Pathogen-Microbiota-Host Interactions. <i>Cell Host and Microbe</i> , 2015 , 18, 275-84	23.4	57
116	Structural and mechanistic roles of novel chemical ligands on the SdiA quorum-sensing transcription regulator. <i>MBio</i> , 2015 , 6,	7.8	56

115	Influence of the major nitrite transporter NirC on the virulence of a Swollen Head Syndrome avian pathogenic E. coli (APEC) strain. <i>Veterinary Microbiology</i> , 2015 , 175, 123-31	3.3	15
114	Enteric Pathogens Exploit the Microbiota-generated Nutritional Environment of the Gut. <i>Microbiology Spectrum</i> , 2015 , 3,	8.9	24
113	Global analysis of posttranscriptional regulation by GlmY and GlmZ in enterohemorrhagic Escherichia coli O157:H7. <i>Infection and Immunity</i> , 2015 , 83, 1286-95	3.7	44
112	Recurrent urinary tract infections in healthy and nonpregnant women. <i>Urological Science</i> , 2014 , 25, 1-8	0.3	45
111	Cell-to-Cell Signaling in Escherichia coli and Salmonella. <i>EcoSal Plus</i> , 2014 , 6,	7.7	24
110	The Interplay between the Microbiota and Enterohemorrhagic Escherichia coli. <i>Microbiology Spectrum</i> , 2014 , 2,	8.9	15
109	QseC inhibitors as an antivirulence approach for Gram-negative pathogens. <i>MBio</i> , 2014 , 5, e02165	7.8	85
108	Posttranscriptional control of microbe-induced rearrangement of host cell actin. <i>MBio</i> , 2014 , 5, e01025	- 1/3 8	43
107	The gut commensal Bacteroides thetaiotaomicron exacerbates enteric infection through modification of the metabolic landscape. <i>Cell Host and Microbe</i> , 2014 , 16, 759-69	23.4	171
106	Nutrient and chemical sensing by intestinal pathogens. <i>Microbes and Infection</i> , 2013 , 15, 759-64	9.3	15
105	Interference with Bacterial Cell-to-Cell Chemical Signaling in Development of New Anti-Infectives 2013 , 241-261		
104	Restrictive Streptomycin Resistance Mutations Decrease the Formation of Attaching and Effacing Lesions in Escherichia coli O157:H7 Strains. <i>Antimicrobial Agents and Chemotherapy</i> , 2013 , 57, 4260-426	6 ^{5.9}	4
103	The interacting Cra and KdpE regulators are involved in the expression of multiple virulence factors in enterohemorrhagic Escherichia coli. <i>Journal of Bacteriology</i> , 2013 , 195, 2499-508	3.5	31
102	The acyl-homoserine lactone synthase YenI from Yersinia enterocolitica modulates virulence gene expression in enterohemorrhagic Escherichia coli O157:H7. <i>Infection and Immunity</i> , 2013 , 81, 4192-9	3.7	7
101	Virulence and stress-related periplasmic protein (VisP) in bacterial/host associations. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 1470-5	11.5	42
100	SdiA aids enterohemorrhagic Escherichia coli carriage by cattle fed a forage or grain diet. <i>Infection and Immunity</i> , 2013 , 81, 3472-8	3.7	17
99	Fucose sensing regulates bacterial intestinal colonization. <i>Nature</i> , 2012 , 492, 113-7	50.4	312
98	Enterohemorrhagic Escherichia coli virulence regulation by two bacterial adrenergic kinases, QseC and QseE. <i>Infection and Immunity</i> , 2012 , 80, 688-703	3.7	49

(2010-2012)

Virulence meets metabolism: Cra and KdpE gene regulation in enterohemorrhagic Escherichia coli. <i>MBio</i> , 2012 , 3, e00280-12	7.8	94
Shiga toxin in enterohemorrhagic E.coli: regulation and novel anti-virulence strategies. <i>Frontiers in Cellular and Infection Microbiology</i> , 2012 , 2, 81	5.9	90
Enterohemorrhagic E. coli (EHEC) pathogenesis. <i>Frontiers in Cellular and Infection Microbiology</i> , 2012 , 2, 90	5.9	173
Microbiology. Virulence or competition?. <i>Science</i> , 2012 , 336, 1238-9	33.3	8
Interplay between the QseC and QseE bacterial adrenergic sensor kinases in Salmonella enterica serovar Typhimurium pathogenesis. <i>Infection and Immunity</i> , 2012 , 80, 4344-53	3.7	42
Ethanolamine controls expression of genes encoding components involved in interkingdom signaling and virulence in enterohemorrhagic Escherichia coli O157:H7. <i>MBio</i> , 2012 , 3,	7.8	112
Atypical enteropathogenic Escherichia coli that contains functional locus of enterocyte effacement genes can be attaching-and-effacing negative in cultured epithelial cells. <i>Infection and Immunity</i> , 2011 , 79, 1833-41	3.7	16
Characterization of IcmF of the type VI secretion system in an avian pathogenic Escherichia coli (APEC) strain. <i>Microbiology (United Kingdom)</i> , 2011 , 157, 2954-2962	2.9	58
Hfq virulence regulation in enterohemorrhagic Escherichia coli O157:H7 strain 86-24. <i>Journal of Bacteriology</i> , 2011 , 193, 6843-51	3.5	65
The LysR-type regulator QseA regulates both characterized and putative virulence genes in enterohaemorrhagic Escherichia coli O157:H7. <i>Molecular Microbiology</i> , 2010 , 76, 1306-21	4.1	30
Anti-virulence strategies to combat bacteria-mediated disease. <i>Nature Reviews Drug Discovery</i> , 2010 , 9, 117-28	64.1	854
The LysR-type transcriptional regulator QseD alters type three secretion in enterohemorrhagic Escherichia coli and motility in K-12 Escherichia coli. <i>Journal of Bacteriology</i> , 2010 , 192, 3699-712	3.5	26
A transcriptome study of the QseEF two-component system and the QseG membrane protein in enterohaemorrhagic Escherichia coli O157: H7. <i>Microbiology (United Kingdom)</i> , 2010 , 156, 1167-1175	2.9	24
SdiA bridges chemical signaling between Salmonella enterica serovar Typhimurium and Yersinia enterocolitica in mice. <i>Journal of Bacteriology</i> , 2010 , 192, 21-2	3.5	7
Outbreak caused by cad-negative Shiga toxin-producing Escherichia coli O111, Oklahoma. <i>Foodborne Pathogens and Disease</i> , 2010 , 7, 107-9	3.8	14
The type VI secretion system plays a role in type 1 fimbria expression and pathogenesis of an avian pathogenic Escherichia coli strain. <i>Infection and Immunity</i> , 2010 , 78, 4990-8	3.7	75
SdiA sensing of acyl-homoserine lactones by enterohemorrhagic E. coli (EHEC) serotype O157:H7 in the bovine rumen. <i>Gut Microbes</i> , 2010 , 1, 432-5	8.8	38
Chemical sensing in mammalian host-bacterial commensal associations. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 9831-6	11.5	100
	MBio, 2012, 3, e00280-12 Shiga toxin in enterohemorrhagic E.coli: regulation and novel anti-virulence strategies. Frontiers in Cellular and Infection Microbiology, 2012, 2, 81 Enterohemorrhagic E. coli (EHEC) pathogenesis. Frontiers in Cellular and Infection Microbiology, 2012, 2, 90 Microbiology. Virulence or competition?. Science, 2012, 336, 1238-9 Interplay between the QseC and QseE bacterial adrenergic sensor kinases in Salmonella enterica serovar Typhimurium pathogenesis. Infection and Immunity, 2012, 80, 4344-53 Ethanolamine controls expression of genes encoding components involved in interkingdom signaling and virulence in enterohemorrhagic Escherichia coli 0157:H7. MBio, 2012, 3, Atypical enteropathogenic Escherichia coli that contains functional locus of enterocyte effacement genes can be attaching-and-effacing negative in cultured epithelial cells. Infection and Immunity, 2011, 79, 1833-41 Characterization of IcmF of the type VI secretion system in an avian pathogenic Escherichia coli (APEC) strain. Microbiology (United Kingdom), 2011, 157, 2954-2962 Hfq virulence regulation in enterohemorrhagic Escherichia coli 0157:H7 strain 86-24. Journal of Bacteriology, 2011, 193, 6843-51 The LysR-type regulator QseA regulates both characterized and putative virulence genes in enterohaemorrhagic Escherichia coli 0157:H7. Molecular Microbiology, 2010, 76, 1306-21 Anti-virulence strategies to combat bacteria-mediated disease. Nature Reviews Drug Discovery, 2010, 9, 117-28 The LysR-type transcriptional regulator OseD alters type three secretion in enterohemorrhagic Escherichia coli 0157: H7. Microbiology (United Kingdom), 2010, 192, 3699-712 A transcriptome study of the QseEF two-component system and the QseG membrane protein in enterohemorrhagic Escherichia coli 0157: H7. Microbiology (United Kingdom), 2010, 156, 1167-1175 SdiA bridges chemical signaling between Salmonella enterica serovar Typhimurium and Yersinia enterocolitica in mice. Journal of Bacteriology, 2010, 192, 21-2 Outbreak caused by cad-	Shiga toxin in enterohemorrhagic E.coli: regulation and novel anti-virulence strategies. <i>Frontiers in Cellular and Infection Microbiology</i> , 2012, 2, 81 Enterohemorrhagic E. coli (EHEC) pathogenesis. <i>Frontiers in Cellular and Infection Microbiology</i> , 2012, 2, 90 Microbiology. Virulence or competition?. <i>Science</i> , 2012, 336, 1238-9 333 Interplay between the QseC and QseE bacterial adrenergic sensor kinases in Salmonella enterica serovar Typhimurium pathogenesis. <i>Infection and Immunity</i> , 2012, 80, 4344-53 27 Ethanolamine controls expression of genes encoding components involved in interkingdom signalling and virulence in enterohemorrhagic Escherichia coli O157:H7. <i>MBio</i> , 2012, 3, Atypical enteropathogenic Escherichia coli that contains functional locus of enterocyte effacement genes can be attaching-and-effacing negative in cultured epithelial cells. <i>Infection and Immunity</i> , 2011, 79, 1833-41 Characterization of IcmF of the type VI secretion system in an avian pathogenic Escherichia coli (APEC) strain. <i>Microbiology (United Kingdom)</i> , 2011, 157, 2954-2962 HfQ virulence regulation in enterohemorrhagic Escherichia coli O157:H7 strain 86-24. <i>Journal of Bacteriology</i> , 2011, 193, 6843-51 The LysR-type regulator QseA regulates both characterized and putative virulence genes in enterohamorrhagic Escherichia coli O157:H7. <i>Molecular Microbiology</i> , 2010, 76, 1306-21 4.1 Anti-virulence strategies to combat bacteria-mediated disease. <i>Nature Reviews Drug Discovery</i> , 2010, 9, 117-28 The LysR-type transcriptional regulator QseD alters type three secretion in enterohemorrhagic Escherichia coli O157: H7. <i>Molecular Microbiology</i> , 2010, 192, 3699-712 Atranscriptome study of the QseEF two-component system and the QseG membrane protein in enterohamorrhagic Escherichia coli o157: H7. <i>Microbiology (United Kingdom)</i> , 2010, 156, 1167-1175 3.5 3.6 3.6 3.7 3.8 3.8 3.9 3.9 3.9 3.9 3.9 3.9

79	QseC mediates Salmonella enterica serovar typhimurium virulence in vitro and in vivo. <i>Infection and Immunity</i> , 2010 , 78, 914-26	3.7	119
78	The Epinephrine/Norepinephrine/Autoinducer-3 Interkingdom Signaling System in Escherichia coli O157:H7 2010 , 213-227		5
77	An alternative polyamine biosynthetic pathway is widespread in bacteria and essential for biofilm formation in Vibrio cholerae. <i>Journal of Biological Chemistry</i> , 2009 , 284, 9899-907	5.4	128
76	The two-component system QseEF and the membrane protein QseG link adrenergic and stress sensing to bacterial pathogenesis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 5889-94	11.5	112
75	The QseC adrenergic signaling cascade in Enterohemorrhagic E. coli (EHEC). <i>PLoS Pathogens</i> , 2009 , 5, e1000553	7.6	150
74	Jamming bacterial communication: new approaches for the treatment of infectious diseases. <i>EMBO Molecular Medicine</i> , 2009 , 1, 201-10	12	157
73	Cell-to-cell signalling during pathogenesis. <i>Cellular Microbiology</i> , 2009 , 11, 363-9	3.9	101
72	Inter-kingdom signaling: chemical language between bacteria and host. <i>Current Opinion in Microbiology</i> , 2009 , 12, 192-8	7.9	147
71	Novel approaches to bacterial infection therapy by interfering with cell-to-cell signaling. <i>Current Protocols in Microbiology</i> , 2009 , Chapter 17, Unit17.3	7.1	3
70	Inter-kingdom signalling: communication between bacteria and their hosts. <i>Nature Reviews Microbiology</i> , 2008 , 6, 111-20	22.2	522
69	The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates. <i>Journal of Bacteriology</i> , 2008 , 190, 6881-93	3.5	607
68	Global Effects of the Cell-to-Cell Signaling Molecules Autoinducer-2, Autoinducer-3, and Epinephrine in a luxS Mutant of Enterohemorrhagic Escherichia coli. <i>Infection and Immunity</i> , 2008 , 76, 1319-1319	3.7	78
67	Targeting QseC signaling and virulence for antibiotic development. <i>Science</i> , 2008 , 321, 1078-80	33.3	382
66	CadA negatively regulates Escherichia coli O157:H7 adherence and intestinal colonization. <i>Infection and Immunity</i> , 2008 , 76, 5072-81	3.7	26
65	Novel approaches to bacterial infection therapy by interfering with bacteria-to-bacteria signaling. <i>Expert Review of Anti-Infective Therapy</i> , 2007 , 5, 271-6	5.5	32
64	Development of novel plasmid vectors and a promoter trap system in Francisella tularensis compatible with the pFLN10 based plasmids. <i>Plasmid</i> , 2007 , 58, 159-66	3.3	13
63	QseA directly activates transcription of LEE1 in enterohemorrhagic Escherichia coli. <i>Infection and Immunity</i> , 2007 , 75, 2432-40	3.7	53
62	Adrenergic regulation of bacterial virulence. <i>Journal of Infectious Diseases</i> , 2007 , 195, 1248-9	7	9

(2004-2007)

61	A novel two-component signaling system that activates transcription of an enterohemorrhagic Escherichia coli effector involved in remodeling of host actin. <i>Journal of Bacteriology</i> , 2007 , 189, 2468-7	7 <i>6</i> ^{3.5}	112
60	QseA and GrlR/GrlA regulation of the locus of enterocyte effacement genes in enterohemorrhagic Escherichia coli. <i>Journal of Bacteriology</i> , 2007 , 189, 5387-92	3.5	51
59	Quorum sensing by enteric pathogens. Current Opinion in Gastroenterology, 2007, 23, 10-5	3	69
58	Global effects of the cell-to-cell signaling molecules autoinducer-2, autoinducer-3, and epinephrine in a luxS mutant of enterohemorrhagic Escherichia coli. <i>Infection and Immunity</i> , 2007 , 75, 4875-84	3.7	96
57	Bundle-forming pili and EspA are involved in biofilm formation by enteropathogenic Escherichia coli. <i>Journal of Bacteriology</i> , 2006 , 188, 3952-61	3.5	61
56	The QseC sensor kinase: a bacterial adrenergic receptor. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 10420-10425	11.5	421
55	Autoinducer 3 and epinephrine signaling in the kinetics of locus of enterocyte effacement gene expression in enterohemorrhagic Escherichia coli. <i>Infection and Immunity</i> , 2006 , 74, 5445-55	3.7	117
54	AI-3 synthesis is not dependent on luxS in Escherichia coli. <i>Journal of Bacteriology</i> , 2006 , 188, 5668-81	3.5	147
53	Quorum sensing in Escherichia coli and Salmonella. <i>International Journal of Medical Microbiology</i> , 2006 , 296, 125-31	3.7	194
52	Quorum sensing: the many languages of bacteria. FEMS Microbiology Letters, 2006, 254, 1-11	2.9	279
51	Bacterial cell-to-cell signaling in the gastrointestinal tract. <i>Infection and Immunity</i> , 2005 , 73, 3197-209	3.7	134
50	Events at the host-microbial interface of the gastrointestinal tract III. Cell-to-cell signaling among microbial flora, host, and pathogens: there is a whole lot of talking going on. <i>American Journal of Physiology - Renal Physiology</i> , 2005 , 288, G1105-9	5.1	44
49	Transcriptional regulation of flhDC by QseBC and sigma (FliA) in enterohaemorrhagic Escherichia coli. <i>Molecular Microbiology</i> , 2005 , 57, 1734-49	4.1	120
48	Transcriptional autoregulation by quorum sensing Escherichia coli regulators B and C (QseBC) in enterohaemorrhagic E. coli (EHEC). <i>Molecular Microbiology</i> , 2005 , 58, 441-55	4.1	65
47	Colonization of gnotobiotic piglets by a luxS mutant strain of Escherichia coli O157:H7. <i>Infection and Immunity</i> , 2005 , 73, 1214-6	3.7	7
46	Modulation of enteropathogenic Escherichia coli virulence by quorum sensing. <i>Infection and Immunity</i> , 2004 , 72, 2329-37	3.7	102
45	Striking a balance: inter-kingdom cell-to-cell signaling, friendship or war?. <i>Trends in Immunology</i> , 2004 , 25, 505-7	14.4	10
44	Cell-to-cell signaling in intestinal pathogens. <i>Current Issues in Intestinal Microbiology</i> , 2004 , 5, 9-17		20

43	Bacteria-host communication: the language of hormones. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 8951-6	11.5	663
42	Quorum sensing Escherichia coli regulators B and C (QseBC): a novel two-component regulatory system involved in the regulation of flagella and motility by quorum sensing in E. coli. <i>Molecular Microbiology</i> , 2002 , 43, 809-21	4.1	391
41	Quorum-sensing Escherichia coli regulator A: a regulator of the LysR family involved in the regulation of the locus of enterocyte effacement pathogenicity island in enterohemorrhagic E. coli. <i>Infection and Immunity</i> , 2002 , 70, 3085-93	3.7	151
40	Flagella: multipurpose structures in EPEC. <i>Trends in Microbiology</i> , 2002 , 10, 262	12.4	
39	Quorum sensing is a global regulatory mechanism in enterohemorrhagic Escherichia coli O157:H7. Journal of Bacteriology, 2001 , 183, 5187-97	3.5	346
38	Activation of enteropathogenic Escherichia coli (EPEC) LEE2 and LEE3 operons by Ler. <i>Molecular Microbiology</i> , 2000 , 38, 781-93	4.1	115
37	The locus of enterocyte effacement (LEE)-encoded regulator controls expression of both LEE- and non-LEE-encoded virulence factors in enteropathogenic and enterohemorrhagic Escherichia coli. <i>Infection and Immunity</i> , 2000 , 68, 6115-26	3.7	287
36	How the bacterial flora and the epithelial cell get along. <i>Trends in Microbiology</i> , 2000 , 8, 544	12.4	4
35	The Locus of Enterocyte Effacement (LEE)-Encoded Regulator Controls Expression of Both LEE-and Non-LEE-Encoded Virulence Factors in Enteropathogenic and EnterohemorrhagicEscherichia coli. <i>Infection and Immunity</i> , 2000 , 68, 6115-6126	3.7	11
34	The Per regulon of enteropathogenic Escherichia coli: identification of a regulatory cascade and a novel transcriptional activator, the locus of enterocyte effacement (LEE)-encoded regulator (Ler). <i>Molecular Microbiology</i> , 1999 , 33, 296-306	4.1	330
33	Lack of expression of bundle-forming pili in some clinical isolates of enteropathogenic Escherichia coli (EPEC) is due to a conserved large deletion in the bfp operon. <i>FEMS Microbiology Letters</i> , 1999 , 179, 169-74	2.9	28
32	Illuminating quorum sensing. <i>Trends in Microbiology</i> , 1999 , 7, 481	12.4	
31	Characterization of the locus of enterocyte effacement (LEE) in different enteropathogenic Escherichia coli (EPEC) and Shiga-toxin producing Escherichia coli (STEC) serotypes. <i>FEMS Microbiology Letters</i> , 1998 , 164, 133-9	2.9	80
30	Molecular and ultrastructural characterisation of EspA from different enteropathogenic Escherichia coli serotypes. <i>FEMS Microbiology Letters</i> , 1998 , 169, 73-80	2.9	17
29	Comparison between enterotoxigenic Escherichia coli strains expressing "F42," F41 and K99 colonization factors. <i>Microbiology and Immunology</i> , 1993 , 37, 869-75	2.7	5
28	Overview and Historical Perspectives1-13		1
27	Animal Reservoirs of Shiga Toxin-Producing Escherichia coli211-230		2
26	Public Health Microbiology of Shiga Toxin-Producing Escherichia coli245-259		2

25	Escherichia coli O104:H4 Pathogenesis: An Enteroaggregative E. coli/Shiga Toxin-Producing E. coli Explosive Cocktail of High Virulence503-529	2
24	Shiga Toxin (Stx) Classification, Structure, and Function37-53	1
23	The Locus of Enterocyte Effacement and Associated Virulence Factors of Enterohemorrhagic Escherichia coli97-130	2
22	Enteric Pathogens Exploit the Microbiota-generated Nutritional Environment of the Gut279-296	3
21	Characterization of the locus of enterocyte effacement (LEE) in different enteropathogenic Escherichia coli (EPEC) and Shiga-toxin producing Escherichia coli (STEC) serotypes	4
20	Clinical Studies of Escherichia coli O157:H7 Conjugate Vaccines in Adults and Young Children477-485	
19	Vaccination of Cattle against Escherichia coli O157:H7487-501	
18	Risk Factors for Shiga Toxin-Producing Escherichia coli-Associated Human Diseases359-380	
17	Detection of Shiga Toxin-Producing Escherichia coli from Nonhuman Sources and Strain Typing261-295	Ο
16	Role of Shiga/Vero Toxins in Pathogenesis73-95	
15	Shiga Toxin/Verocytotoxin-ProducingEscherichia coliInfections: Practical Clinical Perspectives297-319	
14	The Interplay between the Microbiota and Enterohemorrhagic Escherichia coli403-417	
13	Enterohemorrhagic Escherichia coli Adhesins131-155	
12	Shiga Toxin-Producing Escherichia coli in Fresh Produce: A Food Safety Dilemma231-244	1
11	Enterohemorrhagic Escherichia coli Pathogenesis and the Host Response381-402	1
10	Veterinary Public Health Approach to Managing Pathogenic Verocytotoxigenic Escherichia coli in the Agri-Food Chain457-476	
9	Taxonomy Meets Public Health: The Case of Shiga Toxin-Producing Escherichia coli15-36	0
8	Enterohemorrhagic Escherichia coli Genomics: Past, Present, and Future55-71	

1

New Therapeutic Developments against Shiga Toxin-Producing Escherichia coli 341-358 1

Peri- and Postharvest Factors in the Control of Shiga Toxin-Producing Escherichia coli in Beef437-456

PreharvestlFood Safety for Escherichia coli O157 and Other Pathogenic Shiga Toxin-Producing Strains419-436

The Inflammatory Response during EnterohemorrhagicEscherichia coliInfection321-339 1

Shiga Toxin (Verotoxin)-ProducingEscherichia coliin Japan197-209

Enterohemorrhagic Escherichia coli Virulence Gene Regulation175-195

Regulation in Response to Host-Derived Signaling Molecules 545-565