
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7572951/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Long-enduring oxygen redox enabling robust layered cathodes for sodium-ion batteries. Chemical Engineering Journal, 2022, 435, 134944.	12.7	11
2	Enhancing the Reversibility of Lattice Oxygen Redox Through Modulated Transition Metal–Oxygen Covalency for Layered Battery Electrodes. Advanced Materials, 2022, 34, e2201152.	21.0	49
3	Synergetic Anion–Cation Redox Ensures a Highly Stable Layered Cathode for Sodiumâ€lon Batteries. Advanced Science, 2022, 9, e2105280.	11.2	27
4	Interface-Guided Formation of 2D Ultrathin MnO ₂ Nanosheets with Abundant Oxygen Defects for High Performance Supercapacitors. ACS Applied Energy Materials, 2022, 5, 6962-6969.	5.1	3
5	In-situ/operando characterization techniques in lithium-ion batteries and beyond. Journal of Energy Chemistry, 2021, 59, 191-211.	12.9	64
6	A high-stability biphasic layered cathode for sodium-ion batteries. Chemical Communications, 2021, 57, 2891-2894.	4.1	7
7	Oxygen vacancy promising highly reversible phase transition in layered cathodes for sodium-ion batteries. Nano Research, 2021, 14, 4100-4106.	10.4	29
8	Pinning Effect Enhanced Structural Stability toward a Zeroâ€Strain Layered Cathode for Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2021, 60, 13366-13371.	13.8	70
9	Pinning Effect Enhanced Structural Stability toward a Zeroâ€Strain Layered Cathode for Sodiumâ€Ion Batteries. Angewandte Chemie, 2021, 133, 13478-13483.	2.0	17
10	Recent advances in sulfide electrolytes toward high specific energy solid-state lithium batteries. Materials Chemistry Frontiers, 2021, 5, 4892-4911.	5.9	31
11	Advanced cobalt-free cathode materials for sodium-ion batteries. Chemical Society Reviews, 2021, 50, 13189-13235.	38.1	109
12	A high-performance layered Cr-Based cathode for sodium-ion batteries. Nano Energy, 2020, 67, 104215.	16.0	40
13	Progress on multiphase layered transition metal oxide cathodes of sodium ion batteries. Chinese Chemical Letters, 2020, 31, 2167-2176.	9.0	51
14	Suppressing Cation Migration and Reducing Particle Cracks in a Layered Feâ€Based Cathode for Advanced Sodiumâ€lon Batteries. Small, 2020, 16, e1904388.	10.0	41
15	P2-Type Layered Na _{0.75} Ni _{1/3} Ru _{1/6} Mn _{1/2} O ₂ Cathode Material with Excellent Rate Performance for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 39056-39062.	8.0	18
16	Integrating P2 into O′3 toward a robust Mn-Based layered cathode for sodium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 23820-23826.	10.3	21
17	Anion–Cation Synergetic Contribution to High Capacity, Structurally Stable Cathode Materials for Sodiumâ€ion Batteries. Advanced Functional Materials, 2020, 30, 2005164.	14.9	45
18	Ni-Doped Layered Manganese Oxide as a Stable Cathode for Potassium-Ion Batteries. ACS Applied Materials & amp: Interfaces. 2020, 12, 10490-10495.	8.0	44

#	Article	IF	CITATIONS
19	Improving the structural and cyclic stabilities of P2-type Na _{0.67} MnO ₂ cathode material <i>via</i> Cu and Ti co-substitution for sodium ion batteries. Chemical Communications, 2020, 56, 6293-6296.	4.1	21
20	A Superlatticeâ€Stabilized Layered Oxide Cathode for Sodiumâ€Ion Batteries. Advanced Materials, 2020, 32, e1907936.	21.0	50
21	Exploration of Advanced Electrode Materials for Rechargeable Sodiumâ€ion Batteries. Advanced Energy Materials, 2019, 9, 1800212.	19.5	204
22	Adverse effects of interlayer-gliding in layered transition-metal oxides on electrochemical sodium-ion storage. Energy and Environmental Science, 2019, 12, 825-840.	30.8	205
23	Sodium Alginate Enabled Advanced Layered Manganese-Based Cathode for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 26817-26823.	8.0	27
24	Leatherâ€Based Strain Sensor with Hierarchical Structure for Motion Monitoring. Advanced Materials Technologies, 2019, 4, 1900442.	5.8	37
25	Review on anionic redox in sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 23662-23678.	10.3	77
26	A New Type of Liâ€Rich Rockâ€Salt Oxide Li ₂ Ni _{1/3} Ru _{2/3} O ₃ with Reversible Anionic Redox Chemistry. Advanced Materials, 2019, 31, e1807825.	21.0	90
27	Na ₂ Ru _{1â^'x} Mn _x O ₃ as the cathode for sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 4395-4399.	10.3	24
28	Dual-component LixTiO2@silica functional coating in one layer for performance enhanced LiNi0.6Co0.2Mn0.2O2 cathode. Nano Energy, 2019, 58, 673-679.	16.0	84
29	Enhanced K-ion kinetics in a layered cathode for potassium ion batteries. Chemical Communications, 2019, 55, 7910-7913.	4.1	32
30	Manganeseâ€Based Naâ€Rich Materials Boost Anionic Redox in Highâ€Performance Layered Cathodes for Sodiumâ€ion Batteries. Advanced Materials, 2019, 31, e1807770.	21.0	113
31	Suppressed the High-Voltage Phase Transition of P2-Type Oxide Cathode for High-Performance Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 14848-14853.	8.0	60
32	Capturing Reversible Cation Migration in Layered Structure Materials for Naâ€lon Batteries. Advanced Energy Materials, 2019, 9, 1900189.	19.5	41
33	Revealing the Critical Role of Titanium in Layered Manganeseâ€Based Oxides toward Advanced Sodiumâ€lon Batteries via a Combined Experimental and Theoretical Study. Small Methods, 2019, 3, 1800183.	8.6	32
34	Tin disulfide embedded in N-, S-doped carbon nanofibers as anode material for sodium-ion batteries. Chemical Engineering Journal, 2019, 359, 1244-1251.	12.7	97
35	Bi ₂ S ₃ Nanorods Bonding on Reduced Graphene Oxide Surface as Advanced Anode Materials for Sodiumâ€ion Batteries. Energy Technology, 2019, 7, 1800876.	3.8	15
36	High-energy Mn-based layered cathodes for sodium-ion batteries. Science Bulletin, 2019, 64, 149-150.	9.0	4

#	Article	IF	CITATIONS
37	Both Cationic and Anionic Co-(de)intercalation into a Metal-Oxide Material. Joule, 2018, 2, 1134-1145.	24.0	107
38	Direct Visualization of the Reversible O ^{2â^'} /O ^{â^'} Redox Process in Liâ€Rich Cathode Materials. Advanced Materials, 2018, 30, e1705197.	21.0	264
39	Cation-mixing stabilized layered oxide cathodes for sodium-ion batteries. Science Bulletin, 2018, 63, 376-384.	9.0	75
40	Reversible anionic redox activity in Na ₃ RuO ₄ cathodes: a prototype Na-rich layered oxide. Energy and Environmental Science, 2018, 11, 299-305.	30.8	126
41	Tailoring Sodium Anodes for Stable Sodium–Oxygen Batteries. Advanced Functional Materials, 2018, 28, 1706374.	14.9	63
42	MOF-Based Separator in an Li–O ₂ Battery: An Effective Strategy to Restrain the Shuttling of Dual Redox Mediators. ACS Energy Letters, 2018, 3, 463-468.	17.4	151
43	Amorphous P ₂ S ₅ /C Composite as High-Performance Anode Materials for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 16-20.	8.0	20
44	Li ₂ CO ₃ -free Li–O ₂ /CO ₂ battery with peroxide discharge product. Energy and Environmental Science, 2018, 11, 1211-1217.	30.8	120
45	Highâ€Voltage Liâ€Ion Fullâ€Cells with Ultralong Term Cycle Life at Elevated Temperature. Advanced Energy Materials, 2018, 8, 1802322.	19.5	34
46	Exploring a high capacity O3-type cathode for sodium-ion batteries and its structural evolution during an electrochemical process. Chemical Communications, 2018, 54, 12167-12170.	4.1	26
47	Intensive investigation on all-solid-state Li-air batteries with cathode catalysts of single-walled carbon nanotube/RuO2. Journal of Power Sources, 2018, 395, 439-443.	7.8	39
48	In situ X-ray diffraction and thermal analysis of LiNi0.8Co0.15Al0.05O2 synthesized via co-precipitation method. Journal of Energy Chemistry, 2018, 27, 1655-1660.	12.9	29
49	A Hybrid Electrolytes Design for Capacityâ€Equivalent Dualâ€Graphite Battery with Superior Longâ€Term Cycle Life. Advanced Energy Materials, 2018, 8, 1801120.	19.5	50
50	Research Progress for the Development of Liâ€Air Batteries: Addressing Parasitic Reactions Arising from Air Composition. Energy and Environmental Materials, 2018, 1, 61-74.	12.8	46
51	A phase-transition-free cathode for sodium-ion batteries with ultralong cycle life. Nano Energy, 2018, 52, 88-94.	16.0	58
52	An ultrafast rechargeable lithium metal battery. Journal of Materials Chemistry A, 2018, 6, 15517-15522.	10.3	43
53	A Highâ€Crystalline NaV _{1.25} Ti _{0.75} O ₄ Anode for Wideâ€Temperature Sodiumâ€ion Battery. Advanced Energy Materials, 2018, 8, 1801162.	19.5	41
54	Highly reversible sodium storage in a GeP ₅ /C composite anode with large capacity and low voltage. Journal of Materials Chemistry A, 2017, 5, 4413-4420.	10.3	97

#	Article	IF	CITATIONS
55	Status and prospects of polymer electrolytes for solid-state Li–O ₂ (air) batteries. Energy and Environmental Science, 2017, 10, 860-884.	30.8	211
56	From O ₂ ^{â^'} to HO ₂ ^{â^'} : Reducing Byâ€Products and Overpotential in Liâ€O ₂ Batteries by Water Addition. Angewandte Chemie - International Edition, 2017, 56, 4960-4964.	13.8	133
57	From O ₂ ^{â^'} to HO ₂ ^{â^'} : Reducing Byâ€Products and Overpotential in Liâ€O ₂ Batteries by Water Addition. Angewandte Chemie, 2017, 129, 5042-5046.	2.0	31
58	A high-performance supercapacitor based on activated carbon fibers with an optimized pore structure and oxygen-containing functional groups. Materials Chemistry Frontiers, 2017, 1, 958-966.	5.9	57
59	Solar energy storage in the rechargeable batteries. Nano Today, 2017, 16, 46-60.	11.9	175
60	Tunable Electrochemistry via Controlling Lattice Water in Layered Oxides of Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 34909-34914.	8.0	12
61	A Postspinel Anode Enabling Sodiumâ€lon Ultralong Cycling and Superfast Transport via 1D Channels. Advanced Energy Materials, 2017, 7, 1700361.	19.5	13
62	Unraveling the Complex Role of Iodide Additives in Li–O ₂ Batteries. ACS Energy Letters, 2017, 2, 1869-1878.	17.4	102
63	Environmentally stable interface of layered oxide cathodes for sodium-ion batteries. Nature Communications, 2017, 8, 135.	12.8	218
64	Understanding sodium-ion diffusion in layered P2 and P3 oxides via experiments and first-principles calculations: a bridge between crystal structure and electrochemical performance. NPG Asia Materials, 2016, 8, e266-e266.	7.9	101
65	Recent advances in titanium-based electrode materials for stationary sodium-ion batteries. Energy and Environmental Science, 2016, 9, 2978-3006.	30.8	368
66	Spongeâ€Like Cathode Material Selfâ€Assembled from Twoâ€Dimensional V ₂ O ₅ Nanosheets for Sodiumâ€lon Batteries. ChemElectroChem, 2015, 2, 1660-1664.	3.4	65
67	A Highâ€Voltage and Ultralongâ€Life Sodium Full Cell for Stationary Energy Storage. Angewandte Chemie - International Edition, 2015, 54, 11701-11705.	13.8	126
68	A Layered P2―and O3â€Type Composite as a Highâ€Energy Cathode for Rechargeable Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2015, 54, 5894-5899.	13.8	321
69	High-performance symmetric sodium-ion batteries using a new, bipolar O3-type material, Na _{0.8} Ni _{0.4} Ti _{0.6} O ₂ . Energy and Environmental Science, 2015, 8, 1237-1244.	30.8	215
70	A new layered sodium molybdenum oxide anode for full intercalation-type sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 22012-22016.	10.3	54
71	Novel Stable Gel Polymer Electrolyte: Toward a High Safety and Long Life Li–Air Battery. ACS Applied Materials & Interfaces, 2015, 7, 23798-23804.	8.0	89
72	A Highâ€Capacity, Lowâ€Cost Layered Sodium Manganese Oxide Material as Cathode for Sodiumâ€lon Batteries. ChemSusChem, 2014, 7, 2115-2119.	6.8	93

#	Article	IF	CITATIONS
73	A novel tunnel Na0.61Ti0.48Mn0.52O2 cathode material for sodium-ion batteries. Chemical Communications, 2014, 50, 7998.	4.1	61
74	Study of the lithium/nickel ions exchange in the layered LiNi0.42Mn0.42Co0.16O2 cathode material for lithium ion batteries: experimental and first-principles calculations. Energy and Environmental Science, 2014, 7, 1068.	30.8	195
75	Novel titanium-based O3-type NaTi _{0.5} Ni _{0.5} O ₂ as a cathode material for sodium ion batteries. Chemical Communications, 2014, 50, 457-459.	4.1	179
76	Surface coating of lithium–manganese-rich layered oxides with delaminated MnO2 nanosheets as cathode materials for Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 4422.	10.3	112
77	An Ultrastable Anode for Longâ€Life Roomâ€Temperature Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2014, 53, 8963-8969.	13.8	126
78	Preparation of NiMn2O4 with large specific surface area from an epoxide-driven solâ^'gel process and its capacitance. Electrochimica Acta, 2013, 87, 546-553.	5.2	110
79	Preparation of Ag-Nanoparticle-Loaded MnO ₂ Nanosheets and Their Capacitance Behavior. Energy & Fuels, 2012, 26, 618-623.	5.1	82
80	Preparation and capacitance performance of Ag–graphene based nanocomposite. Journal of Power Sources, 2012, 201, 376-381.	7.8	82
81	Synthesis of novel Mn3O4 microsphere and its distinctive capacitance change during electrochemical cycling. Powder Technology, 2012, 228, 371-376.	4.2	19