
Michael Stembridge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7572853/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The 2018 Lake Louise Acute Mountain Sickness Score. High Altitude Medicine and Biology, 2018, 19, 4-6.	0.9	324
2	Conduit artery structure and function in lowlanders and native highlanders: relationships with oxidative stress and role of sympathoexcitation. Journal of Physiology, 2014, 592, 1009-1024.	2.9	71
3	Ventricular structure, function, and mechanics at high altitude: chronic remodeling in Sherpa vs. short-term lowlander adaptation. Journal of Applied Physiology, 2014, 117, 334-343.	2.5	64
4	The overlooked significance of plasma volume for successful adaptation to high altitude in Sherpa and Andean natives. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16177-16179.	7.1	58
5	Predominance of normal left ventricular geometry in the male â€~athlete's heart'. Heart, 2014, 100, 1264-1271.	2.9	55
6	Baroreflex control of sympathetic vasomotor activity and resting arterial pressure at high altitude: insight from Lowlanders and Sherpa. Journal of Physiology, 2019, 597, 2379-2390.	2.9	44
7	Impaired myocardial function does not explain reduced left ventricular filling and stroke volume at rest or during exercise at high altitude. Journal of Applied Physiology, 2015, 119, 1219-1227.	2.5	37
8	The independent effects of hypovolaemia and pulmonary vasoconstriction on ventricular function and exercise capacity during acclimatisation to 3800Âm. Journal of Physiology, 2019, 597, 1059-1072.	2.9	37
9	Effects of playing surface on physiological responses and performance variables in a controlled football simulation. Journal of Sports Sciences, 2013, 31, 878-886.	2.0	36
10	Cerebral oxidative metabolism is decreased with extreme apnoea in humans; impact of hypercapnia. Journal of Physiology, 2016, 594, 5317-5328.	2.9	36
11	Resting pulmonary haemodynamics and shunting: a comparison of seaâ€level inhabitants to high altitude Sherpas. Journal of Physiology, 2014, 592, 1397-1409.	2.9	31
12	Alterations in Cardiac Mechanics Following Ultra-Endurance Exercise: Insights from Left and Right Ventricular Area-Deformation Loops. Journal of the American Society of Echocardiography, 2016, 29, 879-887.e1.	2.8	26
13	Hypoxia, not pulmonary vascular pressure, induces blood flow through intrapulmonary arteriovenous anastomoses. Journal of Physiology, 2015, 593, 723-737.	2.9	25
14	Mechanisms underlying reductions in stroke volume at rest and during exercise at high altitude. European Journal of Sport Science, 2016, 16, 577-584.	2.7	25
15	Global REACH 2018: The influence of acute and chronic hypoxia on cerebral haemodynamics and related functional outcomes during cold and heat stress. Journal of Physiology, 2020, 598, 265-284.	2.9	24
16	The 2018 Global Research Expedition on Altitude Related Chronic Health (Global REACH) to Cerro de Pasco, Peru: an Experimental Overview. Experimental Physiology, 2021, 106, 86-103.	2.0	24
17	Shortâ€ŧerm adaptation and chronic cardiac remodelling to high altitude in lowlander natives and Himalayan Sherpa. Experimental Physiology, 2015, 100, 1242-1246.	2.0	23
18	The effect of α ₁ â€adrenergic blockade on postâ€exercise brachial artery flowâ€mediated dilatation at sea level and high altitude. Journal of Physiology, 2017, 595, 1671-1686.	2.9	23

MICHAEL STEMBRIDGE

#	Article	IF	CITATIONS
19	The right ventricle following ultra-endurance exercise: insights from novel echocardiography and 12-lead electrocardiography. European Journal of Applied Physiology, 2015, 115, 71-80.	2.5	22
20	Females have greater left ventricular twist mechanics than males during acute reductions to preload. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H76-H84.	3.2	22
21	Adenosine receptor-dependent signaling is not obligatory for normobaric and hypobaric hypoxia-induced cerebral vasodilation in humans. Journal of Applied Physiology, 2017, 122, 795-808.	2.5	22
22	Competitive apnea and its effect on the human brain: focus on the redox regulation of bloodâ€brain barrier permeability and neuronalâ€parenchymal integrity. FASEB Journal, 2018, 32, 2305-2314.	0.5	22
23	Highs and lows of sympathetic neurocardiovascular transduction: influence of altitude acclimatization and adaptation. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 319, H1240-H1252.	3.2	20
24	UBC-Nepal Expedition: An experimental overview of the 2016 University of British Columbia Scientific Expedition to Nepal Himalaya. PLoS ONE, 2018, 13, e0204660.	2.5	19
25	Chemoreflex mediated arrhythmia during apnea at 5,050 m in low- but not high-altitude natives. Journal of Applied Physiology, 2018, 124, 930-937.	2.5	19
26	<i>In vivo</i> human cardiac shortening and lengthening velocity is region dependent and not coupled with heart rate: †longitudinal' strain rate markedly underestimates apical contribution. Experimental Physiology, 2015, 100, 507-518.	2.0	18
27	Evidence for a physiological role of pulmonary arterial baroreceptors in sympathetic neural activation in healthy humans. Journal of Physiology, 2020, 598, 955-965.	2.9	18
28	Peripheral chemoreflex inhibition with low-dose dopamine: New insight into mechanisms of extreme apnea. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R1162-R1171.	1.8	17
29	UBC-Nepal expedition: upper and lower limb conduit artery shear stress and flow-mediated dilation on ascent to 5,050 m in lowlanders and Sherpa. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H1532-H1543.	3.2	17
30	Influence of iron manipulation on hypoxic pulmonary vasoconstriction and pulmonary reactivity during ascent and acclimatization to 5050Âm. Journal of Physiology, 2021, 599, 1685-1708.	2.9	17
31	The impact of chronic endurance and resistance training upon the right ventricular phenotype in male athletes. European Journal of Applied Physiology, 2015, 115, 1673-1682.	2.5	16
32	One session of remote ischemic preconditioning does not improve vascular function in acute normobaric and chronic hypobaric hypoxia. Experimental Physiology, 2017, 102, 1143-1157.	2.0	16
33	UBCâ€Nepal expedition: phenotypical evidence for evolutionary adaptation in the control of cerebral blood flow and oxygen delivery at high altitude. Journal of Physiology, 2019, 597, 2993-3008.	2.9	16
34	The effect of an acute bout of resistance exercise on carotid artery strain and strain rate. Physiological Reports, 2016, 4, e12959.	1.7	15
35	Cardiac structure and function in adolescent Sherpa; effect of habitual altitude and developmental stage. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H740-H746.	3.2	15
36	Acute reductions in haematocrit increase flowâ€mediated dilatation independent of resting nitric oxide bioavailability in humans. Journal of Physiology, 2020, 598, 4225-4236.	2.9	15

MICHAEL STEMBRIDGE

#	Article	IF	CITATIONS
37	β ₁ -Blockade increases maximal apnea duration in elite breath-hold divers. Journal of Applied Physiology, 2017, 122, 899-906.	2.5	14
38	Global REACH 2018: the adaptive phenotype to life with chronic mountain sickness and polycythaemia. Journal of Physiology, 2021, 599, 4021-4044.	2.9	13
39	A sympathetic view of blood pressure control at high altitude: new insights from microneurographic studies. Experimental Physiology, 2021, 106, 377-384.	2.0	13
40	The influence of maturation on exerciseâ€induced cardiac remodelling and haematological adaptation. Journal of Physiology, 2022, 600, 583-601.	2.9	13
41	HEART RATE AND INDIRECT BLOOD PRESSURE RESPONSES TO FOUR DIFFERENT FIELD ANESTHETIC PROTOCOLS IN WILD-BORN CAPTIVE CHIMPANZEES (<i>PAN TROGLODYTES</i>). Journal of Zoo and Wildlife Medicine, 2017, 48, 636-644.	0.6	12
42	Muscle sympathetic reactivity to apneic and exercise stress in high-altitude Sherpa. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 318, R493-R502.	1.8	12
43	Global REACH 2018: Andean highlanders, chronic mountain sickness and the integrative regulation of resting blood pressure. Experimental Physiology, 2021, 106, 104-116.	2.0	12
44	Systolic and Diastolic Left Ventricular Mechanics during and after Resistance Exercise. Medicine and Science in Sports and Exercise, 2017, 49, 2025-2031.	0.4	11
45	Similarity between carotid and coronary artery responses to sympathetic stimulation and the role of α1-receptors in humans. Journal of Applied Physiology, 2018, 125, 409-418.	2.5	10
46	Chemoreceptor Responsiveness at Sea Level Does Not Predict the Pulmonary Pressure Response to High Altitude. Chest, 2015, 148, 219-225.	0.8	9
47	Oxygen therapy improves cerebral oxygen delivery and neurovascular function in hypoxaemic chronic obstructive pulmonary disease patients. Experimental Physiology, 2018, 103, 1170-1177.	2.0	9
48	The Menopause Alters Aerobic Adaptations to High-Intensity Interval Training. Medicine and Science in Sports and Exercise, 2020, 52, 2096-2106.	0.4	9
49	Global REACH 2018: volume regulation in high-altitude Andeans with and without chronic mountain sickness. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 321, R504-R512.	1.8	8
50	Global Research Expedition on Altitude-related Chronic Health 2018 Iron Infusion at High Altitude Reduces Hypoxic Pulmonary Vasoconstriction Equally in Both Lowlanders and Healthy Andean Highlanders. Chest, 2022, 161, 1022-1035.	0.8	8
51	The Effects of Exercise Intensity vs. Metabolic State on the Variability and Magnitude of Left Ventricular Twist Mechanics during Exercise. PLoS ONE, 2016, 11, e0154065.	2.5	8
52	Global REACH 2018: renal oxygen delivery is maintained during early acclimatization to 4,330 m. American Journal of Physiology - Renal Physiology, 2020, 319, F1081-F1089.	2.7	8
53	The effects of graded changes in oxygen and carbon dioxide tension on coronary blood velocity independent of myocardial energy demand. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H326-H336.	3.2	7
54	Influence of lung volume on the interaction between cardiac output and cerebrovascular regulation during extreme apnoea. Experimental Physiology, 2017, 102, 1288-1299.	2.0	7

MICHAEL STEMBRIDGE

#	Article	lF	CITATIONS
55	UBCâ€Nepal Expedition: Haemoconcentration underlies the reductions in cerebral blood flow observed during acclimatization to high altitude. Experimental Physiology, 2019, 104, 1963-1972.	2.0	7
56	Temporal changes in pulmonary gas exchange efficiency when breathâ€hold diving below residual volume. Experimental Physiology, 2021, 106, 1120-1133.	2.0	7
57	Right Ventricular Function and Region-Specific Adaptation in Athletes Engaged in High-Dynamic Sports: A Meta-Analysis. Circulation: Cardiovascular Imaging, 2021, 14, e012315.	2.6	7
58	UBC-Nepal expedition: markedly lower cerebral blood flow in high-altitude Sherpa children compared with children residing at sea level. Journal of Applied Physiology, 2017, 123, 1003-1010.	2.5	6
59	UBCâ€Nepal expedition: The use of oral antioxidants does not alter cerebrovascular function at sea level or high altitude. Experimental Physiology, 2018, 103, 523-534.	2.0	6
60	Reduced left ventricular filling following blood volume extraction does not result in compensatory augmentation of cardiac mechanics. Experimental Physiology, 2018, 103, 495-501.	2.0	6
61	Influence of myocardial oxygen demand on the coronary vascular response to arterial blood gas changes in humans. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H132-H140.	3.2	6
62	Cardiac performance with chronic hypoxia: mechanisms regulating stroke volume. Current Opinion in Physiology, 2019, 7, 66-71.	1.8	6
63	Global REACH: Assessment of Brady-Arrhythmias in Andeans and Lowlanders During Apnea at 4330 m. Frontiers in Physiology, 2019, 10, 1603.	2.8	6
64	Regulation of cerebral blood flow by arterial PCO ₂ independent of metabolic acidosis at 5050Âm. Journal of Physiology, 2021, 599, 3513-3530.	2.9	6
65	The influence of hemoconcentration on hypoxic pulmonary vasoconstriction in acute, prolonged, and lifelong hypoxemia. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H738-H747.	3.2	6
66	Reduced blood flow through intrapulmonary arteriovenous anastomoses during exercise in lowlanders acclimatizing to high altitude. Experimental Physiology, 2017, 102, 670-683.	2.0	5
67	Right Ventricular Structure and Function in the Veteran Ultramarathon Runner: Is There Evidence for Chronic Maladaptation?. Journal of the American Society of Echocardiography, 2018, 31, 598-605.e1.	2.8	5
68	Left Ventricular Twist Is Augmented in Hypoxia by β ₁ -Adrenergic–Dependent and β ₁ -Adrenergic–Independent Factors, Without Evidence of Endocardial Dysfunction. Circulation: Cardiovascular Imaging, 2019, 12, e008455.	2.6	5
69	Body mass and growth rates in captive chimpanzees (<i>Pan troglodytes</i>) cared for in African wildlife sanctuaries, zoological institutions, and research facilities. Zoo Biology, 0, , .	1.2	5
70	Use of a heart rateâ€ŧoâ€ground contact time index to monitor and predict middleâ€distance running. European Journal of Sport Science, 2011, 11, 431-436.	2.7	4
71	No heartbreak at high altitude; preserved cardiac function in chronic hypoxia. Experimental Physiology, 2019, 104, 619-620.	2.0	3
72	Stimulus-specific functional remodeling of the left ventricle in endurance and resistance-trained men. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 319, H632-H641.	3.2	3

#	Article	IF	CITATIONS
73	THE INFLUENCE OF ANESTHESIA WITH AND WITHOUT MEDETOMIDINE ON CARDIAC STRUCTURE AND FUNCTION IN SANCTUARY CAPTIVE CHIMPANZEES (PAN TROGLODYTES). Journal of Zoo and Wildlife Medicine, 2021, 52, 986-996.	0.6	3
74	The influence of increased venous return on right ventricular dyssynchrony during acute and sustained hypoxaemia. Experimental Physiology, 2021, 106, 925-937.	2.0	3
75	Elevating physiology: Griffith Pugh on the limits of human performance and survival. Journal of Physiology, 2022, 600, 1811-1813.	2.9	2
76	Kids With Altitude: Acute Mountain Sickness and Changes in Body Mass and Total Body Water in Children Travelling to 3800 m. Wilderness and Environmental Medicine, 2022, 33, 33-42.	0.9	2
77	High prevalence of patent foramen ovale in recreational to elite breath hold divers. Journal of Science and Medicine in Sport, 2022, 25, 553-556.	1.3	2
78	Early exercise for lifelong benefit: sustained cardiac programming in rats and the potential translation to humans. Journal of Physiology, 2018, 596, 1135-1136.	2.9	1
79	UBC-Nepal Expedition: Cerebrovascular Responses to Exercise in Sherpa Children Residing at High Altitude. High Altitude Medicine and Biology, 2019, 20, 45-55.	0.9	1
80	Co-Production at Work: The Process of Breaking Up Sitting Time to Improve Cardiovascular Health. A Pilot Study. International Journal of Environmental Research and Public Health, 2022, 19, 361.	2.6	1
81	The coronary vascular response to the metaboreflex at low altitude and during acute and prolonged high altitude in males. Journal of Applied Physiology, 2022, 132, 1327-1337.	2.5	1
82	Combined neonatal therapies for cardiac function in adulthood – live together, die alone?. Journal of Physiology, 2014, 592, 825-826.	2.9	0
83	Selective Reductions in Pulmonary Artery Pressure Lowers Sympathetic Neural Activity in Healthy Humans at High Altitude. FASEB Journal, 2019, 33, .	0.5	0
84	Evidence of regionâ€specific right ventricular functional adaptation in enduranceâ€trained men in response to an acute volume infusion. Experimental Physiology, 2021, , .	2.0	0
85	Reply from D. R. Perkins and Mike Stembridge. Journal of Physiology, 2022, 600, 2819-2821.	2.9	Ο