
Carlo Ricotta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7572744/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CWM and Rao's quadratic diversity: a unified framework for functional ecology. Oecologia, 2011, 167, 181-188.	0.9	388
2	Remotely sensed spectral heterogeneity as a proxy of species diversity: Recent advances and open challenges. Ecological Informatics, 2010, 5, 318-329.	2.3	284
3	Partitioning diversity for conservation analyses. Diversity and Distributions, 2010, 16, 65-76.	1.9	216
4	Measuring the functional redundancy of biological communities: a quantitative guide. Methods in Ecology and Evolution, 2016, 7, 1386-1395.	2.2	197
5	A note on functional diversity measures. Basic and Applied Ecology, 2005, 6, 479-486.	1.2	195
6	Through the Jungle of Biological Diversity. Acta Biotheoretica, 2005, 53, 29-38.	0.7	169
7	Towards a unifying approach to diversity measures: Bridging the gap between the Shannon entropy and Rao's quadratic index. Theoretical Population Biology, 2006, 70, 237-243.	0.5	148
8	On some properties of the Bray-Curtis dissimilarity and their ecological meaning. Ecological Complexity, 2017, 31, 201-205.	1.4	144
9	Evidence of selective burning in Sardinia (Italy): which land-cover classes do wildfires prefer?. Landscape Ecology, 2008, 23, 241-248.	1.9	123
10	Urban ecosystem services: tree diversity and stability of tropospheric ozone removal. Ecological Applications, 2012, 22, 349-360.	1.8	115
11	The flaming sandpile: self-organized criticality and wildfires. Ecological Modelling, 1999, 119, 73-77.	1.2	113
12	A general framework for analyzing beta diversity, nestedness and related community-level phenomena based on abundance data. Ecological Complexity, 2013, 15, 52-61.	1.4	108
13	Uncertainty in ecosystem mapping by remote sensing. Computers and Geosciences, 2013, 50, 128-135.	2.0	105
14	Diversity partitioning of Rao's quadratic entropy. Theoretical Population Biology, 2009, 76, 299-302.	0.5	100
15	Measuring βâ€diversity by remote sensing: A challenge for biodiversity monitoring. Methods in Ecology and Evolution, 2018, 9, 1787-1798.	2.2	97
16	The worldwide impact of urbanisation on avian functional diversity. Ecology Letters, 2020, 23, 962-972.	3.0	95
17	Spatially constrained rarefaction: incorporating the autocorrelated structure of biological communities into sample-based rarefaction. Community Ecology, 2009, 10, 209-214.	0.5	94
18	Modeling the ecological niche of long-term land use changes: The role of biophysical factors. Ecological Indicators, 2016, 60, 231-236.	2.6	85

#	Article	IF	CITATIONS
19	Phyloecology of urban alien floras. Journal of Ecology, 2009, 97, 1243-1251.	1.9	83
20	Mapping Forest Fuels through Vegetation Phenology: The Role of Coarse-Resolution Satellite Time-Series. PLoS ONE, 2015, 10, e0119811.	1.1	81
21	Self-organized criticality of wildfires ecologically revisited. Ecological Modelling, 2001, 141, 307-311.	1.2	80
22	A parametric diversity measure combining the relative abundances and taxonomic distinctiveness of species. Diversity and Distributions, 2004, 10, 143-146.	1.9	80
23	Potential of remote sensing to predict species invasions. Progress in Physical Geography, 2015, 39, 283-309.	1.4	80
24	Measuring Rao's Q diversity index from remote sensing: An open source solution. Ecological Indicators, 2017, 72, 234-238.	2.6	73
25	Estimating tree species diversity from space in an alpine conifer forest: The Rao's Q diversity index meets the spectral variation hypothesis. Ecological Informatics, 2019, 52, 26-34.	2.3	66
26	Calculating landscape diversity with information-theory based indices: A GRASS GIS solution. Ecological Informatics, 2013, 17, 82-93.	2.3	65
27	On parametric evenness measures. Journal of Theoretical Biology, 2003, 222, 189-197.	0.8	62
28	Computing Î ² -diversity from species-area curves. Basic and Applied Ecology, 2002, 3, 15-18.	1.2	60
29	Using satellite imagery to assess plant species richness: The role of multispectral systems. Applied Vegetation Science, 2007, 10, 325-331.	0.9	60
30	From theoretical ecology to statistical physics and back: self-similar landscape metrics as a synthesis of ecological diversity and geometrical complexity. Ecological Modelling, 2000, 125, 245-253.	1.2	59
31	A semantic taxonomy for diversity measures. Acta Biotheoretica, 2007, 55, 23-33.	0.7	59
32	Bridging the gap between ecological diversity indices and measures of biodiversity with Shannon's entropy: comment to Izsák and Papp. Ecological Modelling, 2002, 152, 1-3.	1.2	55
33	Mapping and monitoring net primary productivity with AVHRR NDVI time-series: statistical equivalence of cumulative vegetation indices. ISPRS Journal of Photogrammetry and Remote Sensing, 1999, 54, 325-331.	4.9	54
34	Are potential natural vegetation maps a meaningful alternative to neutral landscape models?. Applied Vegetation Science, 2002, 5, 271-275.	0.9	53
35	Are landscapes as crisp as we may think?. Ecological Modelling, 2007, 204, 535-539.	1.2	53
36	Functional and phylogenetic similarity among communities. Methods in Ecology and Evolution, 2014, 5, 666-675.	2.2	53

#	Article	IF	CITATIONS
37	On the relationship between Pielou's evenness and landscape dominance within the context of Hill's diversity profiles. Ecological Indicators, 2003, 2, 361-365.	2.6	52
38	Patterns of native and exotic species richness in the urban flora of Brussels: rejecting the â€~rich get richer' model. Biological Invasions, 2010, 12, 233-240.	1.2	51
39	Quantifying evenness and linking it to diversity, beta diversity, and similarity. Ecology, 2019, 100, e02852.	1.5	48
40	Plant–environment interactions through a functional traits perspective: a review of Italian studies. Plant Biosystems, 2019, 153, 853-869.	0.8	48
41	Boundary-based analysis for the assessment of coastal dune landscape integrity over time. Applied Geography, 2013, 45, 41-48.	1.7	47
42	From phylogenetic to functional originality: Guide through indices and new developments. Ecological Indicators, 2017, 82, 196-205.	2.6	47
43	Percolation in real wildfires. Europhysics Letters, 2001, 56, 510-516.	0.7	46
44	Analyzing landscape diversity in time: The use of Rènyi's generalized entropy function. Ecological Indicators, 2007, 7, 505-510.	2.6	43
45	Computing diversity from dated phylogenies and taxonomic hierarchies: does it make a difference to the conclusions?. Oecologia, 2012, 170, 501-506.	0.9	43
46	Biotic homogenization of urban floras by alien species: the role of species turnover and richness differences. Journal of Vegetation Science, 2016, 27, 452-459.	1.1	42
47	Topological analysis of the spatial distribution of plant species richness across the city of Rome (Italy) with the echelon approach. Landscape and Urban Planning, 2001, 57, 69-76.	3.4	40
48	Functional rarefaction for species abundance data. Methods in Ecology and Evolution, 2012, 3, 519-525.	2.2	40
49	Are differences in functional diversity among plant communities on Mediterranean coastal dunes driven by their phylogenetic history?. Journal of Vegetation Science, 2013, 24, 932-941.	1.1	40
50	Using Monte Carlo simulations to estimate relative fire ignition danger in a low-to-medium fire-prone region. Forest Ecology and Management, 2011, 261, 2179-2187.	1.4	39
51	Modelling the Meteorological Forest Fire Niche in Heterogeneous Pyrologic Conditions. PLoS ONE, 2015, 10, e0116875.	1.1	39
52	Additive partitioning of Rao's quadratic diversity: a hierarchical approach. Ecological Modelling, 2005, 183, 365-371.	1.2	38
53	TESTING FOR PHYLOGENETIC SIGNAL IN BIOLOGICAL TRAITS: THE UBIQUITY OF CROSS-PRODUCT STATISTICS. Evolution; International Journal of Organic Evolution, 2013, 67, 828-840.	1.1	38
54	Computing additive -diversity from presence and absence scores: A critique and alternative parameters. Theoretical Population Biology, 2008, 73, 244-249.	0.5	37

#	Article	IF	CITATIONS
55	Time-lapsing biodiversity: An open source method for measuring diversity changes by remote sensing. Remote Sensing of Environment, 2019, 231, 111192.	4.6	37
56	On beta diversity decomposition: Trouble shared is not trouble halved. Ecology, 2010, 91, 1981-1983.	1.5	36
57	Remotely sensed spatial heterogeneity as an exploratory tool for taxonomic and functional diversity study. Ecological Indicators, 2018, 85, 983-990.	2.6	35
58	Phylogenetic beta diversity of native and alien species in European urban floras. Global Ecology and Biogeography, 2012, 21, 751-759.	2.7	34
59	Plant invasion as an emerging challenge for the conservation of heritage sites: the spread of ornamental trees on ancient monuments in Rome, Italy. Biological Invasions, 2021, 23, 1191-1206.	1.2	34
60	Quantifying ecological mosaic connectivity and hemeroby with a new topoecological index. Phytocoenologia, 2003, 33, 623-631.	1.2	33
61	A spatially explicit measure of beta diversity. Community Ecology, 2007, 8, 41-46.	0.5	33
62	Invasiveness of alien plants in Brussels is related to their phylogenetic similarity to native species. Diversity and Distributions, 2010, 16, 655-662.	1.9	33
63	Assessing the Influence of Roads on Fire Ignition: Does Land Cover Matter?. Fire, 2018, 1, 24.	1.2	33
64	Alien plant species do have a clear preference for different land uses within urban environments. Urban Ecosystems, 2018, 21, 1189-1198.	1.1	33
65	rasterdiv—An Information Theory tailored R package for measuring ecosystem heterogeneity from space: To the origin and back. Methods in Ecology and Evolution, 2021, 12, 1093-1102.	2.2	33
66	Knowing fire incidence through fuel phenology: A remotely sensed approach. Ecological Modelling, 2010, 221, 59-66.	1.2	31
67	On hierarchical diversity decomposition. Journal of Vegetation Science, 2005, 16, 223-226.	1.1	30
68	â€~Equivalent numbers' for species, phylogenetic or functional diversity in a nested hierarchy of multiple scales. Methods in Ecology and Evolution, 2016, 7, 1152-1163.	2.2	30
69	Computing $\hat{1}^2 \hat{e} \hat{d}$ iversity with Rao's quadratic entropy: a change of perspective. Diversity and Distributions, 2007, 13, 237-241.	1.9	29
70	Of beta diversity, variance, evenness, and dissimilarity. Ecology and Evolution, 2017, 7, 4835-4843.	0.8	29
71	LaDy: software for assessing local landscape diversity profiles of raster land cover maps using geographic windows. Environmental Modelling and Software, 2003, 18, 373-378.	1.9	28
72	A New Measure of Functional Evenness and Some of Its Properties. PLoS ONE, 2014, 9, e104060.	1.1	28

#	Article	IF	CITATIONS
73	Quantitative comparison of the diversity of landscapes with actual vs. potential natural vegetation. Applied Vegetation Science, 2000, 3, 157-162.	0.9	27
74	Exploring taxonomic filtering in urban environments. Journal of Vegetation Science, 2008, 19, 229-238.	1.1	27
75	Testing for differences in beta diversity with asymmetric dissimilarities. Ecological Indicators, 2009, 9, 719-724.	2.6	27
76	Mediterranean shrublands carbon sequestration: environmental and economic benefits. Mitigation and Adaptation Strategies for Global Change, 2013, 18, 1167-1182.	1.0	27
77	Beware of contagion!. Landscape and Urban Planning, 2003, 62, 173-177.	3.4	26
78	Spatial complexity of ecological communities: Bridging the gap between probabilistic and non-probabilistic uncertainty measures. Ecological Modelling, 2006, 197, 59-66.	1.2	26
79	Landscape complexity and spatial scale influence the relationship between remotely sensed spectral diversity and surveyâ€based plant species richness. Journal of Vegetation Science, 2011, 22, 688-698.	1.1	26
80	Phenological variability drives the distribution of wildfires in Sardinia. Landscape Ecology, 2012, 27, 1535-1545.	1.9	25
81	Let the concept of indicator species be functional!. Journal of Vegetation Science, 2015, 26, 839-847.	1.1	25
82	Measuring betaâ€diversity from taxonomic similarity. Journal of Vegetation Science, 2007, 18, 793-798.	1.1	24
83	Wildfire seasonality and land use: when do wildfires prefer to burn?. Environmental Monitoring and Assessment, 2010, 164, 445-452.	1.3	24
84	A framework for understanding how biodiversity patterns unfold across multiple spatial scales in urban ecosystems. Ecosphere, 2021, 12, e03650.	1.0	24
85	On the information-theoretical meaning of Hill's parametric evenness. Acta Biotheoretica, 2002, 50, 63-71.	0.7	23
86	Common species have lower taxonomic diversity Evidence from the urban floras of Brussels and Rome. Diversity and Distributions, 2008, 14, 530-537.	1.9	23
87	Isoprenoid emission in hygrophyte and xerophyte <scp>E</scp> uropean woody flora: ecological and evolutionary implications. Global Ecology and Biogeography, 2014, 23, 334-345.	2.7	23
88	Linking fire ignitions hotspots and fuel phenology: The importance of being seasonal. Ecological Indicators, 2017, 82, 433-440.	2.6	23
89	Testing for differences in beta diversity from plotâ€toâ€plot dissimilarities. Ecological Research, 2012, 27, 285-292.	0.7	22
90	Geographical Constraints Are Stronger than Invasion Patterns for European Urban Floras. PLoS ONE, 2014, 9, e85661.	1.1	22

#	Article	IF	CITATIONS
91	A simple translation from indices of species diversity to indices of phylogenetic diversity. Ecological Indicators, 2019, 101, 552-561.	2.6	22
92	Modeling the Landscape Drivers of Fire Recurrence in Sardinia (Italy). Environmental Management, 2014, 53, 1077-1084.	1.2	21
93	Incorporating spatial autocorrelation in rarefaction methods: Implications for ecologists and conservation biologists. Ecological Indicators, 2016, 69, 233-238.	2.6	21
94	Leaf thickness and density drive the responsiveness of photosynthesis to air temperature in Mediterranean species according to their leaf habitus. Journal of Arid Environments, 2018, 150, 9-14.	1.2	21
95	From zero to infinity: Minimum to maximum diversity of the planet by spatioâ€parametric Rao's quadratic entropy. Global Ecology and Biogeography, 2021, 30, 1153-1162.	2.7	21
96	Modelling the phenological niche of large fires with remotely sensed NDVI profiles. Ecological Modelling, 2012, 228, 106-111.	1.2	20
97	A multiple-site dissimilarity measure for species presence/absence data and its relationship with nestedness and turnover. Ecological Indicators, 2015, 54, 203-206.	2.6	20
98	Anticipating species distributions: Handling sampling effort bias under a Bayesian framework. Science of the Total Environment, 2017, 584-585, 282-290.	3.9	20
99	An information-theoretical measure of taxonomic diversity. Acta Biotheoretica, 2003, 51, 35-41.	0.7	19
100	From alpha to beta functional and phylogenetic redundancy. Methods in Ecology and Evolution, 2020, 11, 487-493.	2.2	19
101	The remote sensing approach in broad-scale phenological studies. Applied Vegetation Science, 2000, 3, 117-122.	0.9	18
102	Parametric scaling from species relative abundances to absolute abundances in the computation of biological diversity: a first proposal using Shannon's entropy. Acta Biotheoretica, 2003, 51, 181-188.	0.7	18
103	Quantifying functional diversity with graph-theoretical measures: advantages and pitfalls. Community Ecology, 2008, 9, 11-16.	0.5	18
104	Assessing the functional turnover of species assemblages with tailored dissimilarity matrices. Oikos, 2010, 119, 1089-1098.	1.2	18
105	Measuring forest fragmentation using multitemporal remotely sensed data: three decades of change in the dry Chaco. European Journal of Remote Sensing, 2014, 47, 793-804.	1.7	18
106	Using the scaling behaviour of higher taxa for the assessment of species richness. Biological Conservation, 2002, 107, 131-133.	1.9	17
107	The role of C3and C4grasses to interannual variability in remotely sensed ecosystem performance over the US Great Plains. International Journal of Remote Sensing, 2003, 24, 4421-4431.	1.3	17
108	Mapping fire ignition risk in a complex anthropogenic landscape. Remote Sensing Letters, 2011, 2, 213-219.	0.6	17

#	Article	IF	CITATIONS
109	Additive partition of parametric information and its associated beta-diversity measure. Acta Biotheoretica, 2003, 51, 91-100.	0.7	16
110	Quantifying landscape change with actual vs. potential natural vegetation maps. Phytocoenologia, 2003, 33, 591-601.	1.2	16
111	A family of functional dissimilarity measures for presence and absence data. Ecology and Evolution, 2016, 6, 5383-5389.	0.8	16
112	More rich means more diverse: Extending the â€~environmental heterogeneity hypothesis' to taxonomic diversity. Ecological Indicators, 2009, 9, 1271-1274.	2.6	15
113	A classical measure of phylogenetic dissimilarity and its relationship with beta diversity. Basic and Applied Ecology, 2015, 16, 10-18.	1.2	15
114	Fifteen years of changes in fire ignition frequency in Sardinia (Italy): A rich-get-richer process. Ecological Indicators, 2019, 104, 543-548.	2.6	15
115	Measuring functional dissimilarity among plots: Adapting old methods to new questions. Ecological Indicators, 2019, 97, 67-72.	2.6	15
116	Fourier transforms for detecting multitemporal landscape fragmentation by remote sensing. International Journal of Remote Sensing, 2013, 34, 8907-8916.	1.3	14
117	Aquatic macrophyte diversity assessment: Validation of a new sampling method for circular-shaped lakes. Limnologica, 2013, 43, 492-499.	0.7	14
118	Text Mining in Remotely Sensed Phenology Studies: A Review on Research Development, Main Topics, and Emerging Issues. Remote Sensing, 2019, 11, 2751.	1.8	14
119	Measuring similarity among plots including similarity among species: an extension of traditional approaches. Journal of Vegetation Science, 2015, 26, 1061-1067.	1.1	13
120	Modelling fire occurrence at regional scale: does vegetation phenology matter?. European Journal of Remote Sensing, 2015, 48, 763-775.	1.7	13
121	Beta diversity reconsidered. Ecological Research, 2013, 28, 537-540.	0.7	12
122	A Recipe for Unconventional Evenness Measures. Acta Biotheoretica, 2004, 52, 95-104.	0.7	10
123	Quantifying the effects of nutrient addition on community diversity of serpentine vegetation using parametric entropy of type α. Acta Oecologica, 2004, 25, 61-65.	0.5	10
124	Incorporating functional dissimilarities into sample-based rarefaction curves: from taxon resampling to functional resampling. Journal of Vegetation Science, 2010, 21, 280-286.	1.1	10
125	A new method for quantifying the phylogenetic redundancy of biological communities. Oecologia, 2018, 186, 339-346.	0.9	10
126	Towards a unifying framework for diversity and dissimilarity coefficients. Ecological Indicators, 2021, 129, 107971.	2.6	10

8

#	Article	IF	CITATIONS
127	Quantifying the effects of nutrient addition on the taxonomic distinctness of serpentine vegetation. Plant Ecology, 2005, 179, 21-29.	0.7	9
128	Bootstrapping Wildfire Selectivity for the Forest Types of Canton Ticino (Switzerland). Earth Interactions, 2011, 15, 1-11.	0.7	9
129	A Multivariate Approach for Mapping Fire Ignition Risk: The Example of the National Park of Cilento (Southern Italy). Environmental Management, 2015, 56, 157-164.	1.2	9
130	A cautionary note on some phylogenetic dissimilarity measures. Journal of Plant Ecology, 2015, 8, 12-16.	1.2	9
131	Spatio-ecological complexity measures in GRASS GIS. Computers and Geosciences, 2017, 104, 166-176.	2.0	9
132	A Generalized Framework for Analyzing Taxonomic, Phylogenetic, and Functional Community Structure Based on Presence–Absence Data. Mathematics, 2018, 6, 250.	1.1	9
133	From abundance-based to functional-based indicator species. Ecological Indicators, 2020, 118, 106761.	2.6	9
134	Measuring diversity from space: a global view of the free and open source rasterdiv R package under a coding perspective. Community Ecology, 2021, 22, 1-11.	0.5	9
135	On the evaluation of ordinal data with conventional multivariate procedures. Journal of Vegetation Science, 2006, 17, 839-842.	1.1	8
136	Random sampling does not exclude spatial dependence: The importance of neutral models for ecological hypothesis testing. Folia Geobotanica, 2007, 42, 153-160.	0.4	8
137	Quantifying the taxonomic diversity in real species communities. Journal of Physics A: Mathematical and Theoretical, 2008, 41, 224012.	0.7	8
138	On the relationships between rarity, uniqueness, distinctiveness, originality and functional/phylogenetic diversity. Biological Conservation, 2021, 263, 109356.	1.9	8
139	A new parametric measure of functional dissimilarity: Bridging the gap between the Bray-Curtis dissimilarity and the Euclidean distance. Ecological Modelling, 2022, 466, 109880.	1.2	8
140	A parametric index of community evenness. Ecoscience, 2000, 7, 511-515.	0.6	7
141	Does Ordinal Cover Estimation Offer Reliable Quality Data Structures in Vegetation Ecological Studies?. Folia Geobotanica, 2013, 48, 437-447.	0.4	7
142	Measuring Diversity of Environmental Systems. , 2013, , 29-58.		7
143	Measuring Scale-Dependent Landscape Structure with Rao's Quadratic Diversity. ISPRS International Journal of Geo-Information, 2013, 2, 405-412.	1.4	7
144	A cost-effective approach for improving the quality of soil sealing change detection from Landsat imagery. European Journal of Remote Sensing, 2014, 47, 805-819.	1.7	7

Carlo Ricotta

#	Article	IF	CITATIONS
145	British plants as aliens in New Zealand cities: residence time moderates their impact on the beta diversity of urban floras. Biological Invasions, 2017, 19, 3589-3599.	1.2	7
146	A family of (dis)similarity measures based on evenness and its relationship with beta diversity. Ecological Complexity, 2018, 34, 69-73.	1.4	7
147	From the euclidean distance to compositional dissimilarity: What is gained and what is lost. Acta Oecologica, 2021, 111, 103732.	0.5	7
148	On hierarchical diversity decomposition. , 2005, 16, 223.		7
149	An information-theoretical measure of β-diversity. Plant Biosystems, 2003, 137, 57-61.	0.8	6
150	Rarefaction of beta diversity. Ecological Indicators, 2019, 107, 105606.	2.6	6
151	Identifying typical and early warning species by the combination of functional-based diagnostic species and dark diversity. Biodiversity and Conservation, 2022, 31, 1735-1753.	1.2	6
152	Functional imbalance not functional evenness is the third component of community structure. Ecological Indicators, 2022, 140, 109035.	2.6	6
153	Title is missing!. Plant Ecology, 2003, 165, 217-222.	0.7	5
154	Characterizing self-similar temporal clustering of wildfires in the Cilento National Park (Southern) Tj ETQq0 0 0 rg	gBT /Over 1.2	lock္ 10 Tf 50
155	Complementing daily fire-danger assessment using a novel metric based on burnt area ranking. Agricultural and Forest Meteorology, 2020, 295, 108172.	1.9	5
156	Beta redundancy for functional ecology. Methods in Ecology and Evolution, 2021, 12, 1062-1069.	2.2	5
157	Fractal Size Distributions of Wildfires in Hierarchical Landscapes: Natura Facit Saltus?. Comments on Theoretical Biology, 2003, 8, 93-101.	0.6	5
158	Rényi's generalized information as a linear combination of species richness and dominance concentration. Plant Biosystems, 2001, 135, 207-212.	0.8	4
159	Parametric scaling from species to growth-form diversity: an interesting analogy with multifractal functions. BioSystems, 2002, 65, 179-186.	0.9	4
160	Towards a Complex, Plural and Dynamic Approach to Diversity: Rejoinder to Myers and Patil, Podani, and Sarkar. Acta Biotheoretica, 2006, 54, 141-146.	0.7	4
161	Phenotypic dissimilarity index: Correcting for intra―and interindividual variability when quantifying phenotypic variation. Ecology, 2022, 103, .	1.5	4
162	Quantifying post-fire regrowth of remotely sensed mediterranean vegetation with percolation-based methods. Plant Biosystems, 2001, 135, 311-317.	0.8	3

#	Article	IF	CITATIONS
163	A â€~fast-food approach' to the standardization of quadratic diversity. Plant Biosystems, 2005, 139, 411-413.	0.8	3
164	Strong requirements for weak diversities. Diversity and Distributions, 2006, 12, 218-219.	1.9	3
165	A partial ordering approach for functional diversity. Theoretical Population Biology, 2011, 80, 114-120.	0.5	3
166	Limited evidence of local phylogenetic clustering in the urban flora of Brussels. Plant Biosystems, 2015, 149, 31-37.	0.8	3
167	A new method for indicator species analysis in the framework of multivariate analysis of variance. Journal of Vegetation Science, 2021, 32, e13013.	1.1	3
168	Trade-offs in the conservation of phylogenetically distinctive species. Biological Conservation, 2022, 270, 109565.	1.9	3
169	On parametric fragmentation measures. European Journal of Forest Research, 2006, 125, 441-444.	1.1	2
170	Computing parametric beta diversity with unequal plot weights: a solution based on resampling methods. Theoretical Ecology, 2009, 2, 13-17.	0.4	2
171	Using Shannon's recursivity to summarize forest structural diversity. Forests Trees and Livelihoods, 2014, 23, 211-216.	0.5	2
172	Contrasting Impacts of Cultivated Exotics on the Functional Diversity of Domestic Gardens in Three Regions with Different Aridity. Ecosystems, 2021, 24, 875-890.	1.6	2
173	Easy-To-Interpret Procedure to Analyze Fire Seasonality and the Influence of Land Use in Fire Occurrence: A Case Study in Central Italy. Fire, 2020, 3, 46.	1.2	2
174	<title>Comparison of the spectral information content of Landsat Thematic Mapper and Resurs-01
NDVI data for vegetation discrimination and monitoring in central Italy</title> . , 1997, , .		1
175	Informational Analysis of Forest Landscape Spatial Heterogeneity. Journal of Sustainable Forestry, 1999, 9, 97-106.	0.6	1
176	Spatial Algorithms Applied to Landscape Diversity Estimate from Remote Sensing Data. Developments in Environmental Modelling, 2012, , 391-411.	0.3	1
177	CO2 sequestration in two mediterranean dune areas subjected to a different level of anthropogenic disturbance. Estuarine, Coastal and Shelf Science, 2017, 196, 22-30.	0.9	1
178	On two dissimilarity-based measures of functional beta diversity. Ecological Informatics, 2021, 66, 101458.	2.3	1
179	Monitoring Water Stress Induced Variation in the Remotely Sensed Biomass Pattern of Sardinia (Italy) with Variograms. EcoHealth, 1999, 5, 259-264.	0.2	0
180	MULTITEMPORAL PHENOLOGICAL CLASSIFICATION OF ARGENTINA. , 2002, , .		0

#	Article	IF	CITATIONS
181	THE CONTRIBUTION OF C3 AND C4 GRASSES TO INTERANNUAL VARIABILITY IN TIME-INTEGRATED NDVI OVER THE U.S. GREAT PLAINS. , 2002, , .		0