Lazaros Papadopoulos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7572475/publications.pdf

Version: 2024-02-01

393982 525886 30 765 19 27 citations g-index h-index papers 30 30 30 456 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Influence of montmorillonite/carbon nanotube hybrid nanofillers on the properties of poly(lactic) Tj ETQq1 1 0.784	4314 rgBT	/Overlock 1
2	Synthesis, Crystallization, Structure Memory Effects, and Molecular Dynamics of Biobased and Renewable Poly($\langle i\rangle n\langle i\rangle$ -alkylene succinate)s with $\langle i\rangle n\langle i\rangle$ from 2 to 10. Macromolecules, 2021, 54, 1106-1119.	2.2	32
3	Poly(propylene vanillate): A Sustainable Lignin-Based Semicrystalline Engineering Polyester. ACS Sustainable Chemistry and Engineering, 2021, 9, 1383-1397.	3.2	20
4	Synthesis and Characterization of Unsaturated Succinic Acid Biobased Polyester Resins. Applied Sciences (Switzerland), 2021, 11, 896.	1.3	5
5	Unlocking the potential of furan-based poly(ester amide)s: an investigation of crystallization, molecular dynamics and degradation kinetics of novel poly(ester amide)s based on renewable poly(propylene furanoate). Polymer Chemistry, 2021, 12, 5518-5534.	1.9	13
6	Effects of Expandable Graphite at Moderate and Heavy Loadings on the Thermal and Electrical Conductivity of Amorphous Polystyrene and Semicrystalline High-Density Polyethylene. Applied Nano, 2021, 2, 31-45.	0.9	5
7	Comparative study of crystallization, semicrystalline morphology, and molecular mobility in nanocomposites based on polylactide and various inclusions at low filler loadings. Polymer, 2021, 217, 123457.	1.8	23
8	Bottom-Up Development of Nanoimprinted PLLA Composite Films with Enhanced Antibacterial Properties for Smart Packaging Applications. Macromol, 2021, 1, 49-63.	2.4	18
9	Effects of Ag, ZnO and TiO2 nanoparticles at low contents on the crystallization, semicrystalline morphology, interfacial phenomena and segmental dynamics of PLA. Materials Today Communications, 2021, 27, 102192.	0.9	20
10	Properties of poly(lactic acid)/montmorillonite/carbon nanotubes nanocomposites: determination of percolation threshold. Journal of Materials Science, 2021, 56, 16887-16901.	1.7	22
11	Structure-Properties relationships in renewable composites based on polylactide filled with Tannin and Kraft Lignin - Crystallization and molecular mobility. Thermochimica Acta, 2021, 703, 178998.	1.2	15
12	Investigation of the catalytic activity and reaction kinetic modeling of two antimony catalysts in the synthesis of poly(ethylene furanoate). Green Chemistry, 2021, 23, 2507-2524.	4. 6	24
13	Molecular mobility and crystallization of renewable poly(ethylene furanoate) <i>in situ</i> filled with carbon nanotubes and graphene nanoparticles. Soft Matter, 2021, 17, 5815-5828.	1.2	21
14	Effective and facile solvent-free synthesis route to novel biobased monomers from vanillic acid: Structure–thermal property relationships of sustainable polyesters. Polymer Degradation and Stability, 2020, 181, 109315.	2.7	15
15	Molecular Dynamics in Nanocomposites Based on Renewable Poly(butylene 2,5-furan-dicarboxylate) In Situ Reinforced by Montmorillonite Nanoclays: Effects of Clay Modification, Crystallization, and Hydration. Journal of Physical Chemistry B, 2020, 124, 7306-7317.	1.2	20
16	Towards High Molecular Weight Furan-Based Polyesters: Solid State Polymerization Study of Bio-Based Poly(Propylene Furanoate) and Poly(Butylene Furanoate). Materials, 2020, 13, 4880.	1.3	14
17	Calorimetric and Dielectric Study of Renewable Poly(hexylene 2,5-furan-dicarboxylate)-Based Nanocomposites In Situ Filled with Small Amounts of Graphene Platelets and Silica Nanoparticles. Polymers, 2020, 12, 1239.	2.0	25
18	Tuning the Properties of Furandicarboxylic Acid-Based Polyesters with Copolymerization: A Review. Polymers, 2020, 12, 1209.	2.0	99

	#	Article	IF	CITATIONS
	19	Effects of graphene nanoplatelets on crystallization, mechanical performance and molecular dynamics of the renewable poly(propylene furanoate). Polymer, 2020, 189, 122172.	1.8	26
	20	Synthesis and characterization of novel polymer/clay nanocomposites based on poly (butylene) Tj ETQq0 0 0 rgBT	/Oyerlock	10 Tf 50 70
	21	Straightforward Synthetic Protocol to Bio-Based Unsaturated Poly(ester amide)s from Itaconic Acid with Thixotropic Behavior. Polymers, 2020, 12, 980.	2.0	12
	22	Interfacial Interactions, Crystallization, and Molecular Dynamics of Renewable Poly(Propylene) Tj ETQq0 0 0 rgBT / Graphene Oxide. Journal of Physical Chemistry C, 2020, 124, 10220-10234.	Overlock I 1.5	10 Tf 50 627 36
	23	Thermal, nanoindentation and dielectric study of nanocomposites based on poly(propylene furanoate) and various inclusions. Materials Today Communications, 2019, 20, 100585.	0.9	25
	24	Synthesis, Thermal Properties and Decomposition Mechanism of Poly(Ethylene Vanillate) Polyester. Polymers, 2019, 11, 1672.	2.0	23
	25	Novel high Tg fully biobased poly(hexamethylene-co-isosorbide-2,5-furan dicarboxylate) copolyesters: Synergistic effect of isosorbide insertion on thermal performance enhancement. Polymer Degradation and Stability, 2019, 169, 108983.	2.7	44
	26	Thermal Decomposition Kinetics and Mechanism of In-Situ Prepared Bio-Based Poly(propylene 2,5-furan) Tj ETQq0	9.9 rgBT /	Qyerlock 10
	27	Synthesis and characterization of two new biobased poly(pentylene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 Polymer Degradation and Stability, 2019, 160, 242-263.	0 432 Td (2.7	2,5-furandic
	28	Synthesis and Characterization of In-Situ-Prepared Nanocomposites Based on Poly(Propylene 2,5-Furan) Tj ETQq0	0.0 rgBT /0 2.0	Oyerlock 10
	29	Synthesis and characterization of novel poly(ethylene furanoate-co-adipate) random copolyesters with enhanced biodegradability. Polymer Degradation and Stability, 2018, 156, 32-42.	2.7	60
	30	A Facile Method to Synthesize Semicrystalline Poly(ester amide)s from 2,5-Furandicarboxylic Acid, 1,10-Decanediol, and Crystallizable Amido Diols. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	13