
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/757246/publications.pdf Version: 2024-02-01

μινι Ζηλκ

#	Article	IF	CITATIONS
1	Circular RNA Profiling Identifies Novel circPPARA that Promotes Intramuscular Fat Deposition in Pigs. Journal of Agricultural and Food Chemistry, 2022, 70, 4123-4137.	5.2	22
2	Adaptive Evolution of the Fox Coronavirus Based on Genome-Wide Sequence Analysis. BioMed Research International, 2022, 2022, 1-8.	1.9	0
3	Comparison of Coated and Uncoated Trace Minerals on Growth Performance, Tissue Mineral Deposition, and Intestinal Microbiota in Ducks. Frontiers in Microbiology, 2022, 13, 831945.	3.5	3
4	Differences in the gut microbiomes of dogs and wolves: roles of antibiotics and starch. BMC Veterinary Research, 2021, 17, 112.	1.9	9
5	Pooled Sequencing Analysis of Geese (Anser cygnoides) Reveals Genomic Variations Associated With Feather Color. Frontiers in Genetics, 2021, 12, 650013.	2.3	6
6	Whole Genome Sequencing Reveals Signatures for Artificial Selection for Different Sizes in Japanese Primitive Dog Breeds. Frontiers in Genetics, 2021, 12, 671686.	2.3	3
7	Parallel Independent Losses of G-Type Lysozyme Genes in Hairless Aquatic Mammals. Genome Biology and Evolution, 2021, 13, .	2.5	2
8	Mucosal Microbiota and Metabolome in the lleum of Hu Sheep Offered a Low-Grain, Pelleted or Non-pelleted High-Grain Diet. Frontiers in Microbiology, 2021, 12, 718884.	3.5	4
9	Co-activation of Akt, Nrf2, and NF-κB signals under UPRER in torpid Myotis ricketti bats for survival. Communications Biology, 2020, 3, 658.	4.4	11
10	Adaptive Evolution of Feline Coronavirus Genes Based on Selection Analysis. BioMed Research International, 2020, 2020, 1-7.	1.9	6
11	Unveiling the Biogeography and Potential Functions of the Intestinal Digesta- and Mucosa-Associated Microbiology, 2020, 11, 596882.	3.5	11
12	Identification of Candidate Circular RNAs Underlying Intramuscular Fat Content in the Donkey. Frontiers in Genetics, 2020, 11, 587559.	2.3	16
13	Accelerated Evolution of Limb-Related Gene <i>Hoxd11</i> in the Common Ancestor of Cetaceans and Ruminants (Cetruminantia). G3: Genes, Genomes, Genetics, 2020, 10, 515-524.	1.8	4
14	A missense mutation in <i>ASIP</i> is associated with light point variation in donkeys. Animal Genetics, 2020, 51, 629-629.	1.7	2
15	Identification of Diverse Bat Alphacoronaviruses and Betacoronaviruses in China Provides New Insights Into the Evolution and Origin of Coronavirus-Related Diseases. Frontiers in Microbiology, 2019, 10, 1900.	3.5	53
16	Scotopic rod vision in tetrapods arose from multiple early adaptive shifts in the rate of retinal release. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12627-12628.	7.1	10
17	Comparison of whole embryonic development in the duck (Anas platyrhynchos) and goose (Anser) Tj ETQq1 1	0.784314	rgBT /Overloc
18	Synergy between <i>MC1R</i> and <i>ASIP</i> for coat color in horses (<i>Equus caballus</i>)1. Journal	0.5	9

of Animal Science, 2019, 97, 1578-1585.

#	Article	IF	CITATIONS
19	Parallel Amino Acid Deletions of Prestin Protein in Two Dramatically Divergent Bat Lineages Suggest the Complexity of the Evolution of Echolocation in Bats. Acta Chiropterologica, 2019, 20, 311.	0.6	1
20	As Blind as a Bat? Opsin Phylogenetics Illuminates the Evolution of Color Vision in Bats. Molecular Biology and Evolution, 2019, 36, 54-68.	8.9	28
21	Molecular Data Support an Early Shift to an Intermediate-Light Niche in the Evolution of Mammals. Molecular Biology and Evolution, 2018, 35, 1130-1134.	8.9	15
22	Discovery of Diverse Rodent and Bat Pestiviruses With Distinct Genomic and Phylogenetic Characteristics in Several Chinese Provinces. Frontiers in Microbiology, 2018, 9, 2562.	3.5	30
23	Genetic characteristics of H9N2 avian influenza viruses isolated from free-range poultry in Eastern China, in 2014–2015. Poultry Science, 2018, 97, 3793-3800.	3.4	20
24	Molecular signatures and functional analysis of beige adipocytes induced from in vivo intra-abdominal adipocytes. Science Advances, 2018, 4, eaar5319.	10.3	18
25	Retention and losses of ultraviolet-sensitive visual pigments in bats. Scientific Reports, 2018, 8, 11933.	3.3	10
26	Prenatal development supports a single origin of laryngeal echolocation in bats. Nature Ecology and Evolution, 2017, 1, 21.	7.8	43
27	Maintenance of neural activities in torpid Rhinolophus ferrumequinum bats revealed by 2D gel-based proteome analysis. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 1004-1019.	2.3	4
28	The Genomes of Two Bat Species with Long Constant Frequency Echolocation Calls. Molecular Biology and Evolution, 2017, 34, 20-34.	8.9	38
29	Molecular Evolution of the Nuclear Factor (Erythroid-Derived 2)-Like 2 Gene Nrf2 in Old World Fruit Bats (Chiroptera: Pteropodidae). PLoS ONE, 2016, 11, e0146274.	2.5	10
30	Antioxidant Defenses in the Brains of Bats during Hibernation. PLoS ONE, 2016, 11, e0152135.	2.5	39
31	Prolonged treatment with 3-isobutyl-1-methylxanthine improves the efficiency of differentiating 3T3-L1 cells into adipocytes. Analytical Biochemistry, 2016, 507, 18-20.	2.4	8
32	Genetic diversity of coronaviruses in Miniopterus fuliginosus bats. Science China Life Sciences, 2016, 59, 604-614.	4.9	20
33	Differential introgression suggests candidate beneficial and barrier loci between two parapatric subspecies of Pearson′s horseshoe bat <i>Rhinolophus pearsoni</i> . Environmental Epigenetics, 2016, 62, 405-412.	1.8	5
34	Repetitive transpositions of mitochondrial DNA sequences to the nucleus during the radiation of horseshoe bats (Rhinolophus, Chiroptera). Gene, 2016, 581, 161-169.	2.2	8
35	The complete mitochondrial genome of the king horseshoe bat (<i>Rhinolophus rex</i>) using next-generation sequencing and Sanger sequencing. Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 2016, 27, 4545-4546.	0.7	1
36	Deciphering the bat virome catalog to better understand the ecological diversity of bat viruses and the bat origin of emerging infectious diseases. ISME Journal, 2016, 10, 609-620.	9.8	249

#	Article	IF	CITATIONS
37	A complete mitochondrial genome of the Damaraland mole rat <i>Fukomys damarensis</i> retrieved from the published genome of the brandt's bat <i>Myotis brandtii</i> . Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 2016, 27, 4282-4283.	0.7	0
38	ORF8-Related Genetic Evidence for Chinese Horseshoe Bats as the Source of Human Severe Acute Respiratory Syndrome Coronavirus. Journal of Infectious Diseases, 2016, 213, 579-583.	4.0	77
39	Enterovirus 71 infection in children with hand, foot, and mouth disease in Shanghai, China: epidemiology, clinical feature and diagnosis. Virology Journal, 2015, 12, 83.	3.4	43
40	BGD: A Database of Bat Genomes. PLoS ONE, 2015, 10, e0131296.	2.5	2
41	Down but Not Out: The Role of MicroRNAs in Hibernating Bats. PLoS ONE, 2015, 10, e0135064.	2.5	22
42	Discovery of Itraconazole with Broad-Spectrum <i>In Vitro</i> Antienterovirus Activity That Targets Nonstructural Protein 3A. Antimicrobial Agents and Chemotherapy, 2015, 59, 2654-2665.	3.2	63
43	Phosphoenolpyruvate Carboxykinase 1 Gene (Pck1) Displays Parallel Evolution between Old World and New World Fruit Bats. PLoS ONE, 2015, 10, e0118666.	2.5	7
44	Relaxed Evolution in the Tyrosine Aminotransferase Gene Tat in Old World Fruit Bats (Chiroptera:) Tj ETQq0 0 0 i	rgBT /Over 2.5	lock 10 Tf 50

45	Heteroplasmy and Ancient Translocation of Mitochondrial DNA to the Nucleus in the Chinese Horseshoe Bat (Rhinolophus sinicus) Complex. PLoS ONE, 2014, 9, e98035.	2.5	9
46	Differential Expression of Meis2, Mab21l2 and Tbx3 during Limb Development Associated with Diversification of Limb Morphology in Mammals. PLoS ONE, 2014, 9, e106100.	2.5	17
47	The Great Roundleaf Bat (Hipposideros armiger) as a Good Model for Cold-Induced Browning of Intra-Abdominal White Adipose Tissue. PLoS ONE, 2014, 9, e112495.	2.5	7
48	Introgression of mitochondrial DNA promoted by natural selection in the Japanese pipistrelle bat (Pipistrellus abramus). Genetica, 2014, 142, 483-494.	1.1	4
49	MERS–Related Betacoronavirus in <i>Vespertilio superans</i> Bats, China . Emerging Infectious Diseases, 2014, 20, 1260-2.	4.3	90
50	Differential introgression among loci across a hybrid zone of the intermediate horseshoe bat (Rhinolophus affinis). BMC Evolutionary Biology, 2014, 14, 154.	3.2	16
51	Adaptive Functional Diversification of Lysozyme in Insectivorous Bats. Molecular Biology and Evolution, 2014, 31, 2829-2835.	8.9	8
52	The Glycogen Synthase 2 Gene (Gys2) Displays Parallel Evolution Between Old World and New World Fruit Bats. Journal of Molecular Evolution, 2014, 78, 66-74.	1.8	5
53	Unique expression patterns of multiple key genes associated with the evolution of mammalian flight. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20133133.	2.6	25
54	Parallel Evolution of the Glycogen Synthase 1 (Muscle) Gene Gys1 Between Old World and New World Fruit Bats (Order: Chiroptera). Biochemical Genetics, 2014, 52, 443-458.	1.7	6

#	Article	IF	CITATIONS
55	Critical roles of mitochondria in brain activities of torpid Myotis ricketti bats revealed by a proteomic approach. Journal of Proteomics, 2014, 105, 266-284.	2.4	14
56	OB-RL silencing inhibits the thermoregulatory ability of Great Roundleaf Bats (Hipposideros armiger). General and Comparative Endocrinology, 2014, 204, 80-87.	1.8	2
57	Comparison of Brain Transcriptome of the Greater Horseshoe Bats (Rhinolophus ferrumequinum) in Active and Torpid Episodes. PLoS ONE, 2014, 9, e107746.	2.5	37
58	Comparative inner ear transcriptome analysis between the Rickett's big-footed bats (Myotis ricketti) and the greater short-nosed fruit bats (Cynopterus sphinx). BMC Genomics, 2013, 14, 916.	2.8	25
59	Multiple bursts of pancreatic ribonuclease gene duplication in insect-eating bats. Gene, 2013, 526, 112-117.	2.2	27
60	Adaptive evolution of tight junction protein claudin-14 in echolocating whales. Gene, 2013, 530, 208-214.	2.2	6
61	Historical introgression and the persistence of ghost alleles in the intermediate horseshoe bat (<i>Rhinolophus affinis</i>). Molecular Ecology, 2013, 22, 1035-1050.	3.9	26
62	Novel SARS-like Betacoronaviruses in Bats, China, 2011. Emerging Infectious Diseases, 2013, 19, 989-91.	4.3	93
63	Adaptive Evolution of the Myo6 Gene in Old World Fruit Bats (Family: Pteropodidae). PLoS ONE, 2013, 8, e62307.	2.5	10
64	Independent Losses of Visual Perception Genes Gja10 and Rbp3 in Echolocating Bats (Order:) Tj ETQq0 0 0 rgBT	Overlock	2 10 Tf 50 382
65	Homocysteine Homeostasis and Betaine-Homocysteine S-Methyltransferase Expression in the Brain of Hibernating Bats. PLoS ONE, 2013, 8, e85632.	2.5	9
66	The Voltage-Gated Potassium Channel Subfamily KQT Member 4 (KCNQ4) Displays Parallel Evolution in Echolocating Bats. Molecular Biology and Evolution, 2012, 29, 1441-1450.	8.9	52
67	Genomic and Genetic Evidence for the Loss of Umami Taste in Bats. Genome Biology and Evolution, 2012, 4, 73-79.	2.5	51
68	Virome Analysis for Identification of Novel Mammalian Viruses in Bat Species from Chinese Provinces. Journal of Virology, 2012, 86, 10999-11012.	3.4	244
69	Multiple Adaptive Losses of Alanine-Glyoxylate Aminotransferase Mitochondrial Targeting in Fruit-Eating Bats. Molecular Biology and Evolution, 2012, 29, 1507-1511.	8.9	23
70	Discovery of Retroviral Homologs in Bats: Implications for the Origin of Mammalian Gammaretroviruses. Journal of Virology, 2012, 86, 4288-4293.	3.4	52
71	Immunohistochemical evidence of cone-based ultraviolet vision in divergent bat species and implications for its evolution. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2012, 161, 398-403.	1.6	12
72	Identification of diverse groups of endogenous gammaretroviruses in mega- and microbats. Journal of General Virology, 2012, 93, 2037-2045.	2.9	48

#	Article	IF	CITATIONS
73	Adaptive Evolution in the Glucose Transporter 4 Gene Slc2a4 in Old World Fruit Bats (Family:) Tj ETQq1 1 0.7843	14.rgBT /C 2.9)verlock 10
74	Widespread Losses of Vomeronasal Signal Transduction in Bats. Molecular Biology and Evolution, 2011, 28, 7-12.	8.9	41
75	The two suborders of chiropterans have the canonical heavy-chain immunoglobulin (Ig) gene repertoire of eutherian mammals. Developmental and Comparative Immunology, 2011, 35, 273-284.	2.3	45
76	Prestin Shows Divergent Evolution Between Constant Frequency Echolocating Bats. Journal of Molecular Evolution, 2011, 73, 109-115.	1.8	13
77	Prestin and high frequency hearing in mammals. Communicative and Integrative Biology, 2011, 4, 236-239.	1.4	22
78	Progressive Pseudogenization: Vitamin C Synthesis and Its Loss in Bats. Molecular Biology and Evolution, 2011, 28, 1025-1031.	8.9	36
79	Recent Loss of Vitamin C Biosynthesis Ability in Bats. PLoS ONE, 2011, 6, e27114.	2.5	25
80	Convergent sequence evolution between echolocating bats and dolphins. Current Biology, 2010, 20, R53-R54.	3.9	202
81	Cetaceans on a Molecular Fast Track to Ultrasonic Hearing. Current Biology, 2010, 20, 1834-1839.	3.9	56
82	Historical maleâ€mediated introgression in horseshoe bats revealed by multilocus DNA sequence data. Molecular Ecology, 2010, 19, 1352-1366.	3.9	48
83	Evolution of the Sweet Taste Receptor Gene Tas1r2 in Bats. Molecular Biology and Evolution, 2010, 27, 2642-2650.	8.9	82
84	Rhodopsin Molecular Evolution in Mammals Inhabiting Low Light Environments. PLoS ONE, 2009, 4, e8326.	2.5	51
85	Differential stepwise evolution of SARS coronavirus functional proteins in different host species. BMC Evolutionary Biology, 2009, 9, 52.	3.2	42
86	Evolution of opsin genes reveals a functional role of vision in the echolocating little brown bat (Myotis lucifugus). Biochemical Systematics and Ecology, 2009, 37, 154-161.	1.3	20
87	The evolution of color vision in nocturnal mammals. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8980-8985.	7.1	202
88	Development and characterization of novel microsatellite markers from the Chinese rufous horseshoe bat (<i>Rhinolophus sinicus</i>) with crossâ€species amplification in closely related taxa. Molecular Ecology Resources, 2009, 9, 183-185.	4.8	3
89	Dietary composition and echolocation call design of three sympatric insectivorous bat species from China. Ecological Research, 2008, 23, 113-119.	1.5	16
90	Adaptive Evolution of 5'HoxD Genes in the Origin and Diversification of the Cetacean Flipper. Molecular Biology and Evolution, 2008, 26, 613-622.	8.9	60

#	Article	IF	CITATIONS
91	The hearing gene <i>Prestin</i> reunites echolocating bats. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13959-13964.	7.1	116
92	Echolocation Calls, Diet, and Phylogenetic Relationships of Stoliczka's Trident Bat, Aselliscus stoliczkanus (Hipposideridae). Journal of Mammalogy, 2007, 88, 736-744.	1.3	26
93	Diet, Echolocation Calls, and Phylogenetic Affinities of the Great Evening Bat (Ia io; Vespertilionidae): Another Carnivorous Bat. Journal of Mammalogy, 2007, 88, 728-735.	1.3	39
94	Evolutionary Relationships between Bat Coronaviruses and Their Hosts. Emerging Infectious Diseases, 2007, 13, 1526-1532.	4.3	123
95	Characteristics of echolocating bats' auditory stereocilia length, compared with other mammals. Science in China Series C: Life Sciences, 2007, 50, 492-496.	1.3	7
96	Accelerated FoxP2 Evolution in Echolocating Bats. PLoS ONE, 2007, 2, e900.	2.5	103
97	HUMAN-LIKE MENSTRUAL CYCLE EXHIBITED BY WILD FULVOUS BATS (Rousettus leschenaultia). Biology of Reproduction, 2007, 77, 157-157.	2.7	0
98	PHYLOGENETICS OF SMALL HORSESHOE BATS FROM EAST ASIA BASED ON MITOCHONDRIAL DNA SEQUENCE VARIATION. Journal of Mammalogy, 2006, 87, 1234-1240.	1.3	56
99	Review of Bats and SARS. Emerging Infectious Diseases, 2006, 12, 1834-1840.	4.3	375
100	DIETARY CHARACTERISTICS OF MYOTIS RICKETTI IN BEIJING, NORTH CHINA. Journal of Mammalogy, 2006, 87, 339-344.	1.3	15
101	Full-length genome sequences of two SARS-like coronaviruses in horseshoe bats and genetic variation analysis. Journal of General Virology, 2006, 87, 3355-3359.	2.9	96
102	Bats Are Natural Reservoirs of SARS-Like Coronaviruses. Science, 2005, 310, 676-679.	12.6	2,130
103	Fruit bats as a natural reservoir of zoonotic viruses. Science Bulletin, 2003, 48, 1179-1182.	1.7	7
104	Dietary analysis confirms that Rickett's big-footed bat (Myotis ricketti) is a piscivore. Journal of Zoology, 2003, 261, 245-248.	1.7	40
105	Doppler-shift compensation behavior in horseshoe bats revisited: auditory feedback controls both a decrease and an increase in call frequency. Journal of Experimental Biology, 2002, 205, 1607-1616.	1.7	41
106	Seasonality of matings and births in captive Sichuan golden monkeys (Rhinopithecus roxellana). American Journal of Primatology, 2000, 51, 265-269.	1.7	31
107	Relationship between echolocation frequency and body size in two species of hipposiderid bats. Science Bulletin, 2000, 45, 1587-1590.	1.7	6
108	Echolocation calls ofMyotis frater (Chiroptera: Hipposideridae) during search flight. Science Bulletin, 2000, 45, 1690-1692.	1.7	0

\sim	-
	ZHANG
SHILYL	/ HANL
Jugar	

#	Article	IF	CITATIONS
109	Following of Brown Capuchin Monkeys by White Hawks in French Guiana. Condor, 2000, 102, 198-201.	1.6	16
110	Spatial pattern in the foraging group of Sichuan golden monkeys. Science Bulletin, 1999, 44, 1369-1372.	1.7	3