
J H Duncan Bassett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7572089/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An atlas of genetic influences on osteoporosis in humans and mice. Nature Genetics, 2019, 51, 258-266.	21.4	557
2	Identification of 153 new loci associated with heel bone mineral density and functional involvement of GPC6 in osteoporosis. Nature Genetics, 2017, 49, 1468-1475.	21.4	391
3	The bone remodelling cycle. Annals of Clinical Biochemistry, 2018, 55, 308-327.	1.6	348
4	Mechanisms of thyroid hormone receptor-specific nuclear and extra nuclear actions. Molecular and Cellular Endocrinology, 2003, 213, 1-11.	3.2	327
5	Role of Thyroid Hormones in Skeletal Development and Bone Maintenance. Endocrine Reviews, 2016, 37, 135-187.	20.1	324
6	Life-Course Genome-wide Association Study Meta-analysis of Total Body BMD and Assessment of Age-Specific Effects. American Journal of Human Genetics, 2018, 102, 88-102.	6.2	252
7	The molecular actions of thyroid hormone in bone. Trends in Endocrinology and Metabolism, 2003, 14, 356-364.	7.1	219
8	Osteoclasts recycle via osteomorphs during RANKL-stimulated bone resorption. Cell, 2021, 184, 1330-1347.e13.	28.9	203
9	Inhibiting the osteocyte-specific protein sclerostin increases bone mass and fracture resistance in multiple myeloma. Blood, 2017, 129, 3452-3464.	1.4	153
10	Common signalling pathways in macrophage and osteoclast multinucleation. Journal of Cell Science, 2018, 131, .	2.0	152
11	Thyroid diseases and bone health. Journal of Endocrinological Investigation, 2018, 41, 99-109.	3.3	149
12	Thyroid Hormone Excess Rather Than Thyrotropin Deficiency Induces Osteoporosis in Hyperthyroidism. Molecular Endocrinology, 2007, 21, 1095-1107.	3.7	137
13	Thyroid and bone. Archives of Biochemistry and Biophysics, 2010, 503, 129-136.	3.0	131
14	Optimal bone strength and mineralization requires the type 2 iodothyronine deiodinase in osteoblasts. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7604-7609.	7.1	123
15	Contrasting Skeletal Phenotypes in Mice with an Identical Mutation Targeted to Thyroid Hormone Receptor $\hat{I}\pm 1$ or \hat{I}^2 . Molecular Endocrinology, 2005, 19, 3045-3059.	3.7	121
16	Thyroid Status during Skeletal Development Determines Adult Bone Structure and Mineralization. Molecular Endocrinology, 2007, 21, 1893-1904.	3.7	114
17	Local control of thyroid hormone action: role of type 2 deiodinase. Journal of Endocrinology, 2011, 209, 261-272.	2.6	113
18	Critical role of the hypothalamic–pituitary–thyroid axis in bone. Bone, 2008, 43, 418-426.	2.9	112

J H DUNCAN BASSETT

#	Article	IF	CITATIONS
19	A Lack of Thyroid Hormones Rather than Excess Thyrotropin Causes Abnormal Skeletal Development in Hypothyroidism. Molecular Endocrinology, 2008, 22, 501-512.	3.7	107
20	The skeletal consequences of thyrotoxicosis. Journal of Endocrinology, 2012, 213, 209-221.	2.6	97
21	Noncanonical thyroid hormone signaling mediates cardiometabolic effects in vivo. Proceedings of the United States of America, 2017, 114, E11323-E11332.	7.1	93
22	Mechanisms of action of thyroid hormones in the skeleton. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 3979-3986.	2.4	83
23	Thyroid hormone metabolism in skeletal development and adult bone maintenance. Trends in Endocrinology and Metabolism, 2012, 23, 155-162.	7.1	81
24	Thyroid Hormones Regulate Fibroblast Growth Factor Receptor Signaling during Chondrogenesis. Endocrinology, 2005, 146, 5568-5580.	2.8	75
25	Type 2 deiodinase polymorphism causes ER stress and hypothyroidism in the brain. Journal of Clinical Investigation, 2018, 129, 230-245.	8.2	75
26	Rapid-Throughput Skeletal Phenotyping of 100 Knockout Mice Identifies 9 New Genes That Determine Bone Strength. PLoS Genetics, 2012, 8, e1002858.	3.5	73
27	Genetic evidence that thyroid hormone is indispensable for prepubertal insulin-like growth factor–I expression and bone acquisition in mice. Journal of Bone and Mineral Research, 2012, 27, 1067-1079.	2.8	73
28	The skeletal phenotypes of TRα and TRβ mutant mice. Journal of Molecular Endocrinology, 2009, 42, 269-282.	2.5	71
29	Classification and Proposed Nomenclature for Inherited Defects of Thyroid Hormone Action, Cell Transport, and Metabolism*. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 768-770.	3.6	62
30	Transferrin receptor 2 controls bone mass and pathological bone formation via BMP and Wnt signalling. Nature Metabolism, 2019, 1, 111-124.	11.9	59
31	Significant deterioration in nanomechanical quality occurs through incomplete extrafibrillar mineralization in rachitic bone: Evidence from in-situ synchrotron X-ray scattering and backscattered electron imaging. Journal of Bone and Mineral Research, 2012, 27, 876-890.	2.8	58
32	Osteocyte transcriptome mapping identifies a molecular landscape controlling skeletal homeostasis and susceptibility to skeletal disease. Nature Communications, 2021, 12, 2444.	12.8	58
33	Kcnn4 Is a Regulator of Macrophage Multinucleation in Bone Homeostasis and Inflammatory Disease. Cell Reports, 2014, 8, 1210-1224.	6.4	53
34	A molecular quantitative trait locus map for osteoarthritis. Nature Communications, 2021, 12, 1309.	12.8	53
35	Studies of the Murine Homolog of the Multiple Endocrine Neoplasia Type 1 (MEN1) Gene, men1. Journal of Bone and Mineral Research, 1999, 14, 3-10.	2.8	48
36	Characterization of skeletal phenotypes of TRα1PV and TRβPV mutant mice: implications for tissue thyroid status and T3 target gene expression. Nuclear Receptor Signaling, 2006, 4, nrs.04011.	1.0	47

J H DUNCAN BASSETT

#	Article	IF	CITATIONS
37	Thyroid Hormone Receptor α Mutation Causes a Severe and Thyroxine-Resistant Skeletal Dysplasia in Female Mice. Endocrinology, 2014, 155, 3699-3712.	2.8	47
38	Thyroid Hormone Regulates Heparan Sulfate Proteoglycan Expression in the Growth Plate. Endocrinology, 2006, 147, 295-305.	2.8	46
39	Classification and Proposed Nomenclature for Inherited Defects of Thyroid Hormone Action, Cell Transport, and Metabolism. Thyroid, 2014, 24, 407-409.	4.5	46
40	Thyrostimulin Regulates Osteoblastic Bone Formation During Early Skeletal Development. Endocrinology, 2015, 156, 3098-3113.	2.8	43
41	Genome-wide association study of extreme high bone mass: Contribution of common genetic variation to extreme BMD phenotypes and potential novel BMD-associated genes. Bone, 2018, 114, 62-71.	2.9	43
42	Novel DAX1 mutations in X-linked adrenal hypoplasia congenita and hypogonadotrophic hypogonadism. Clinical Endocrinology, 1999, 50, 69-75.	2.4	40
43	Role of thyroid hormones in craniofacial development. Nature Reviews Endocrinology, 2020, 16, 147-164.	9.6	33
44	Accelerating functional gene discovery in osteoarthritis. Nature Communications, 2021, 12, 467.	12.8	33
45	A mouse model for spondyloepiphyseal dysplasia congenita with secondary osteoarthritis due to a <i>Col2a1</i> mutation. Journal of Bone and Mineral Research, 2012, 27, 413-428.	2.8	31
46	Rapid phenotyping of knockout mice to identify genetic determinants of bone strength. Journal of Endocrinology, 2016, 231, R31-R46.	2.6	30
47	<i>Slc20a2</i> , Encoding the Phosphate Transporter PiT2, Is an Important Genetic Determinant of Bone Quality and Strength. Journal of Bone and Mineral Research, 2019, 34, 1101-1114.	2.8	30
48	Quantitative X-ray Imaging of Rodent Bone by Faxitron. Methods in Molecular Biology, 2012, 816, 499-506.	0.9	28
49	Thyroid Stimulating Hormone and Bone Mineral Density: Evidence From a Two-Sample Mendelian Randomization Study and a Candidate Gene Association Study. Journal of Bone and Mineral Research, 2018, 33, 1318-1325.	2.8	25
50	A trans-eQTL network regulates osteoclast multinucleation and bone mass. ELife, 2020, 9, .	6.0	24
51	Mice Lacking the Calcineurin Inhibitor Rcan2 Have an Isolated Defect of Osteoblast Function. Endocrinology, 2012, 153, 3537-3548.	2.8	22
52	Adult Mice Lacking the Type 2 Iodothyronine Deiodinase Have Increased Subchondral Bone but Normal Articular Cartilage. Thyroid, 2015, 25, 269-277.	4.5	22
53	IGSF1 Deficiency Results in Human and Murine Somatotrope Neurosecretory Hyperfunction. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e70-e84.	3.6	22
54	Mouse mutant phenotyping at scale reveals novel genes controlling bone mineral density. PLoS Genetics, 2020, 16, e1009190.	3.5	19

J H DUNCAN BASSETT

#	Article	IF	CITATIONS
55	Linkage disequilibrium studies in multiple endocrine neoplasia type 1 (MEN1). Human Genetics, 1997, 100, 657-665.	3.8	15
56	An Essential Physiological Role for MCT8 in Bone in Male Mice. Endocrinology, 2017, 158, 3055-3066.	2.8	15
57	Quantitative X-ray microradiography for high-throughput phenotyping of osteoarthritis in mice. Osteoarthritis and Cartilage, 2014, 22, 1396-1400.	1.3	13
58	A Roadmap to Gene Discoveries and Novel Therapies in Monogenic Low and High Bone Mass Disorders. Frontiers in Endocrinology, 2021, 12, 709711.	3.5	13
59	Bone signaling pathways and treatment of osteoporosis. Expert Review of Endocrinology and Metabolism, 2009, 4, 639-650.	2.4	12
60	PYY is a negative regulator of bone mass and strength. Bone, 2019, 127, 427-435.	2.9	12
61	Bone Phenotyping Approaches in Human, Mice and Zebrafish – Expert Overview of the EU Cost Action GEMSTONE ("GEnomics of MusculoSkeletal traits TranslatiOnal NEtworkâ€). Frontiers in Endocrinology, 2021, 12, 720728.	3.5	12
62	Quantitative X-Ray Imaging of Mouse Bone by Faxitron. Methods in Molecular Biology, 2019, 1914, 559-569.	0.9	11
63	Analysis of Physiological Responses to Thyroid Hormones and Their Receptors in Bone. Methods in Molecular Biology, 2018, 1801, 123-154.	0.9	10
64	Bone Mineral Content and Density. , 2012, 2, 365-400.		9
65	Frequent falls and confusion: recurrent hypoglycemia in a patient with tuberous sclerosis complex. Clinical Case Reports (discontinued), 2018, 6, 904-909.	0.5	5
66	A Polygenic Risk Score as a Risk Factor for Medicationâ€Associated Fractures. Journal of Bone and Mineral Research, 2020, 35, 1935-1941.	2.8	5
67	An <scp><i>ARHGAP25</i></scp> variant links aberrant <scp>Rac1</scp> function to earlyâ€onset skeletal fragility. JBMR Plus, 2021, 5, e10509.	2.7	4
68	The Thyroid Hormone Transporter MCT10 Is a Novel Regulator of Trabecular Bone Mass and Bone Turnover in Male Mice. Endocrinology, 2022, 163, .	2.8	4
69	Mapping of the gene encoding the B56β subunit of protein phosphatase 2A (PPP2R5B) to a 0.5-Mb region of chromosome 11q13 and its exclusion as a candidate gene for multiple endocrine neoplasia type 1 (MEN1). Human Genetics, 1997, 100, 481-485.	3.8	2
70	A Tense Case—Carney's Triad. Journal of the Royal Society of Medicine, 2004, 97, 540-541.	2.0	1
71	An undiagnosed stupor in the acute medical unit: a case of malignant catatonia. QJM - Monthly Journal of the Association of Physicians, 2015, 108, 335-336.	0.5	1

Thyroid Hormone in Bone andÂJoint Disorders. , 2018, , 547-569.

#	Article	IF	CITATIONS
73	Response to Letter to the Editor: "ICSF1 Deficiency Results in Human and Murine Somatotrope Neurosecretory Hyperfunction― Journal of Clinical Endocrinology and Metabolism, 2020, 105, e2315-e2316.	3.6	0

Thyroid hormone, thyroid medication, and the skeleton. , 2021, , 1139-1157.