Hong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7571971/publications.pdf Version: 2024-02-01

HONG WANG

#	Article	IF	CITATIONS
1	Fabrication of Micro/Nanoscale Motors. Chemical Reviews, 2015, 115, 8704-8735.	23.0	603
2	Beyond Platinum: Bubble-Propelled Micromotors Based on Ag and MnO ₂ Catalysts. Journal of the American Chemical Society, 2014, 136, 2719-2722.	6.6	205
3	Direct Z-scheme heterojunction of ZnO/MoS2 nanoarrays realized by flowing-induced piezoelectric field for enhanced sunlight photocatalytic performances. Applied Catalysis B: Environmental, 2021, 285, 119785.	10.8	124
4	Rational Design of Nanoparticles with Deep Tumor Penetration for Effective Treatment of Tumor Metastasis. Advanced Functional Materials, 2018, 28, 1801840.	7.8	112
5	Biomimetic Artificial Inorganic Enzymeâ€Free Selfâ€Propelled Microfish Robot for Selective Detection of Pb ²⁺ in Water. Chemistry - A European Journal, 2014, 20, 4292-4296.	1.7	99
6	Micro/Nanomachines and Living Biosystems: From Simple Interactions to Microcyborgs. Advanced Functional Materials, 2018, 28, 1705421.	7.8	99
7	From Nanomotors to Micromotors: The Influence of the Size of an Autonomous Bubble-Propelled Device upon Its Motion. ACS Nano, 2016, 10, 5041-5050.	7.3	97
8	Bioinspired Spiky Micromotors Based on Sporopollenin Exine Capsules. Advanced Functional Materials, 2017, 27, 1702338.	7.8	92
9	Coordinated behaviors of artificial micro/nanomachines: from mutual interactions to interactions with the environment. Chemical Society Reviews, 2020, 49, 3211-3230.	18.7	91
10	Crucial Role of Surfactants in Bubble-Propelled Microengines. Journal of Physical Chemistry C, 2014, 118, 5268-5274.	1.5	79
11	PhI(OCOCF3)2-Mediated C–C Bond Formation Concomitant with a 1,2-Aryl Shift in a Metal-Free Synthesis of 3-Arylquinolin-2-ones. Organic Letters, 2013, 15, 2906-2909.	2.4	71
12	Catalytic DNA-Functionalized Self-Propelled Micromachines for Environmental Remediation. CheM, 2016, 1, 473-481.	5.8	68
13	Emerging materials for the fabrication of micro/nanomotors. Nanoscale, 2017, 9, 2109-2116.	2.8	67
14	Nano/Microrobots Meet Electrochemistry. Advanced Functional Materials, 2017, 27, 1604759.	7.8	67
15	Beyond platinum: silver-catalyst based bubble-propelled tubular micromotors. Chemical Communications, 2016, 52, 4333-4336.	2.2	65
16	Nanorobots: Machines Squeezed between Molecular Motors and Micromotors. CheM, 2020, 6, 867-884.	5.8	56
17	Magnetically driven motile superhydrophobic sponges for efficient oil removal. Applied Materials Today, 2019, 15, 263-266.	2.3	55
18	Biocompatible Nanomotors as Active Diagnostic Imaging Agents for Enhanced Magnetic Resonance Imaging of Tumor Tissues In Vivo. Advanced Functional Materials, 2021, 31, 2100936.	7.8	54

HONG WANG

#	Article	IF	CITATIONS
19	Dual-stimuli-responsive CuS-based micromotors for efficient photo-Fenton degradation of antibiotics. Journal of Colloid and Interface Science, 2021, 603, 685-694.	5.0	46
20	Bjerknes Forces in Motion: Longâ€Range Translational Motion and Chiral Directionality Switching in Bubbleâ€Propelled Micromotors via an Ultrasonic Pathway. Advanced Functional Materials, 2018, 28, 1702618.	7.8	41
21	Influence of real-world environments on the motion of catalytic bubble-propelled micromotors. Lab on A Chip, 2013, 13, 2937.	3.1	40
22	Fluorescent self-propelled covalent organic framework as a microsensor for nitro explosive detection. Applied Materials Today, 2020, 19, 100550.	2.3	36
23	Construction of direct Z-scheme SnS2@ZnIn2S4@kaolinite heterostructure photocatalyst for efficient photocatalytic degradation of tetracycline hydrochloride. Chemical Engineering Journal, 2022, 429, 132105.	6.6	34
24	Iron-Exchanged Zeolite Micromotors for Enhanced Degradation of Organic Pollutants. Langmuir, 2020, 36, 6924-6929.	1.6	29
25	Influence of pH on the Motion of Catalytic Janus Particles and Tubular Bubbleâ€Propelled Micromotors. Chemistry - A European Journal, 2016, 22, 355-360.	1.7	28
26	Artificial micro-cinderella based on self-propelled micromagnets for the active separation of paramagnetic particles. Chemical Communications, 2013, 49, 5147.	2.2	27
27	Blood Proteins Strongly Reduce the Mobility of Artificial Selfâ€Propelled Micromotors. Chemistry - A European Journal, 2013, 19, 16756-16759.	1.7	27
28	Tissue cell assisted fabrication of tubular catalytic platinum microengines. Nanoscale, 2014, 6, 11359-11363.	2.8	27
29	Iridium atalystâ€Based Autonomous Bubbleâ€Propelled Graphene Micromotors with Ultralow Catalyst Loading. Chemistry - A European Journal, 2014, 20, 14946-14950.	1.7	25
30	Blood electrolytes exhibit a strong influence on the mobility of artificial catalytic microengines. Physical Chemistry Chemical Physics, 2013, 15, 17277.	1.3	24
31	Self-Propelled Aerogel Solar Evaporators for Efficient Solar Seawater Purification. Langmuir, 2021, 37, 9532-9539.	1.6	19
32	Rapid synthesis of self-propelled tubular micromotors for "ON–OFF―fluorescent detection of explosives. Chemical Communications, 2021, 57, 10528-10531.	2.2	16
33	Structural and optical characteristics of novel rareâ€earthâ€free red-emitting BaSn(PO4)2:Mn4+ phosphor. Journal of Molecular Structure, 2021, 1229, 129839.	1.8	15
34	Simultaneous self-exfoliation and autonomous motion of MoS ₂ particles in water. Chemical Communications, 2015, 51, 9899-9902.	2.2	13
35	Injectable Micromotor@Hydrogel System for Antibacterial Therapy. Chemistry - A European Journal, 2022, 28, .	1.7	12
36	Electrochemical properties of layered SnO and PbO for energy applications. RSC Advances, 2015, 5, 101949-101958.	1.7	11

Hong Wang

#	Article	IF	CITATIONS
37	Enzyme-powered nanomotors with enhanced cell uptake and lysosomal escape for combined therapy of cancer. Applied Materials Today, 2022, 27, 101445.	2.3	11
38	Blood metabolite strongly suppresses motion of electrochemically deposited catalytic self-propelled microjet engines. Electrochemistry Communications, 2014, 38, 128-130.	2.3	10
39	Acetylene bubble-powered autonomous capsules: towards in situ fuel. Chemical Communications, 2014, 50, 15849-15851.	2.2	10
40	An immunoassay based on nanomotor-assisted electrochemical response for the detection of immunoglobulin. Mikrochimica Acta, 2022, 189, 47.	2.5	10
41	Hydrogelâ€Based Motors. Advanced Materials Technologies, 2021, 6, 2100158.	3.0	9
42	In situ stable growth of Bi2WO6 on natural hematite for efficient antibiotic wastewater purification by photocatalytic activation of peroxymonosulfate. Chemical Engineering Journal, 2022, 446, 136704.	6.6	8
43	Biotemplated Shell Micromotors for Efficient Degradation of Antibiotics via Enhanced Peroxymonosulfate Activation. Advanced Materials Interfaces, 2022, 9, .	1.9	7
44	The gating effect by thousands of bubble-propelled micromotors in macroscale channels. Nanoscale, 2015, 7, 11575-11579.	2.8	4
45	Dualâ€Propelled Sporopolleninâ€Exineâ€Capsule Micromotors for Nearâ€Infrared Light Triggered Degradation of Organic Pollutants. ChemNanoMat, 2021, 7, 483-487.	1.5	4
46	Monitoring Methionine Decarboxylase by a Supramolecular Tandem Assay. Chemistry - an Asian Journal, 2022, 17, .	1.7	4
47	Visible-light-responsive Z-scheme heterojunction MoS2 NTs/CuInS2 QDs photoanode for enhanced photoelectrocatalytic degradation of tetracycline. Applied Materials Today, 2022, 28, 101504.	2.3	4
48	Polydopamine-Based Surface Modification of Chlorella Microspheres for Multiple Environmental Applications. Journal of Nanoscience and Nanotechnology, 2021, 21, 3065-3071.	0.9	3