## Amey Khanolkar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7571872/publications.pdf Version: 2024-02-01



1

| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Inferring relative dose-dependent color center populations in proton irradiated thoria single<br>crystals using optical spectroscopy. Physical Chemistry Chemical Physics, 2022, 24, 6133-6145.     | 1.3 | 6         |
| 2  | One-step manufacturing process for neodymium-iron (magnet-grade) master alloy. Materials Science<br>for Energy Technologies, 2021, 4, 249-255.                                                      | 1.0 | 4         |
| 3  | An integrated experimental and computational investigation of defect and microstructural effects on thermal transport in thorium dioxide. Acta Materialia, 2021, 213, 116934.                       | 3.8 | 26        |
| 4  | In situ monitoring of microstructure evolution during thermal processing of uranium-zirconium alloys using laser-generated ultrasound. Journal of Nuclear Materials, 2021, 553, 153005.             | 1.3 | 9         |
| 5  | Origin of photoelastic phenomena in Ge-Se network glasses. Physical Review B, 2021, 104, .                                                                                                          | 1.1 | 2         |
| 6  | Determining local thermal transport in a composite uranium-nitride/silicide nuclear fuel using square-pulse transient thermoreflectance technique. Journal of Nuclear Materials, 2020, 528, 151842. | 1.3 | 8         |
| 7  | The influence of lattice defects, recombination, and clustering on thermal transport in single crystal thorium dioxide. APL Materials, 2020, 8, .                                                   | 2.2 | 32        |
| 8  | Nanocontact Tailoring via Microlensing Enables Giant Postfabrication Mesoscopic Tuning in a<br>Selfâ€Assembled Ultrasonic Metamaterial. Advanced Functional Materials, 2020, 30, 1909217.           | 7.8 | 6         |
| 9  | Intragranular thermal transport in U–50Zr. Journal of Nuclear Materials, 2020, 534, 152145.                                                                                                         | 1.3 | 9         |
| 10 | Longitudinal eigenvibration of multilayer colloidal crystals and the effect of nanoscale contact bridges. Nanoscale, 2019, 11, 5655-5665.                                                           | 2.8 | 11        |
| 11 | GST-on-silicon hybrid nanophotonic integrated circuits: a non-volatile quasi-continuously<br>reprogrammable platform. Optical Materials Express, 2018, 8, 1551.                                     | 1.6 | 166       |
| 12 | Spatial Laplace transform for complex wavenumber recovery and its application to the analysis of attenuation in acoustic systems. Journal of Applied Physics, 2016, 120, .                          | 1.1 | 23        |
| 13 | Resonant attenuation of surface acoustic waves by a disordered monolayer of microspheres. Applied Physics Letters, 2016, 108, .                                                                     | 1.5 | 15        |
| 14 | Complex Contact-Based Dynamics of Microsphere Monolayers Revealed by Resonant Attenuation of Surface Acoustic Waves. Physical Review Letters, 2016, 116, 198001.                                    | 2.9 | 46        |
| 15 | Laser-Induced Spallation of Microsphere Monolayers. Langmuir, 2016, 32, 7730-7734.                                                                                                                  | 1.6 | 4         |
| 16 | Laser-induced transient grating setup with continuously tunable period. Review of Scientific Instruments, 2015, 86, 123101.                                                                         | 0.6 | 23        |
| 17 | A self-assembled metamaterial for Lamb waves. Applied Physics Letters, 2015, 107, .                                                                                                                 | 1.5 | 40        |
|    |                                                                                                                                                                                                     |     |           |

18 Damage Identification Using Acoustic Emission Data Obtained from Large Composite Structures. , 0, , .