List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7571653/publications.pdf Version: 2024-02-01



LUIZ C CANÃ8ADO

| #  | Article                                                                                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Studying disorder in graphite-based systems by Raman spectroscopy. Physical Chemistry Chemical Physics, 2007, 9, 1276-1290.                                                                                                                                                                                            | 1.3  | 3,775     |
| 2  | Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies. Nano<br>Letters, 2011, 11, 3190-3196.                                                                                                                                                                                         | 4.5  | 2,807     |
| 3  | General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Applied Physics Letters, 2006, 88, 163106.                                                                                                                                                                    | 1.5  | 2,071     |
| 4  | Influence of the Atomic Structure on the Raman Spectra of Graphite Edges. Physical Review Letters, 2004, 93, 247401.                                                                                                                                                                                                   | 2.9  | 594       |
| 5  | Raman characterization of defects and dopants in graphene. Journal of Physics Condensed Matter, 2015, 27, 083002.                                                                                                                                                                                                      | 0.7  | 451       |
| 6  | Measuring the degree of stacking order in graphite by Raman spectroscopy. Carbon, 2008, 46, 272-275.                                                                                                                                                                                                                   | 5.4  | 358       |
| 7  | Measuring the absolute Raman cross section of nanographites as a function of laser energy and crystallite size. Physical Review B, 2007, 76, .                                                                                                                                                                         | 1.1  | 234       |
| 8  | Raman Signature of Graphene Superlattices. Nano Letters, 2011, 11, 4527-4534.                                                                                                                                                                                                                                          | 4.5  | 234       |
| 9  | Double resonance Raman spectroscopy of single-wall carbon nanotubes. New Journal of Physics, 2003, 5, 157-157.                                                                                                                                                                                                         | 1.2  | 229       |
| 10 | D-band Raman intensity of graphitic materials as a function of laser energy and crystallite size.<br>Chemical Physics Letters, 2006, 427, 117-121.                                                                                                                                                                     | 1.2  | 219       |
| 11 | Anisotropy of the Raman Spectra of Nanographite Ribbons. Physical Review Letters, 2004, 93, 047403.                                                                                                                                                                                                                    | 2.9  | 195       |
| 12 | Structural analysis of polycrystalline graphene systems by Raman spectroscopy. Carbon, 2015, 95, 646-652.                                                                                                                                                                                                              | 5.4  | 184       |
| 13 | Group theory analysis of phonons in two-dimensional transition metal dichalcogenides. Physical<br>Review B, 2014, 90, .                                                                                                                                                                                                | 1.1  | 182       |
| 14 | Geometrical approach for the study of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"&gt;<mml:msup><mml:mi>G</mml:mi><mml:mo>′</mml:mo></mml:msup></mml:math> band<br>in the Raman spectrum of monolayer graphene, bilayer graphene, and bulk graphite. Physical Review B,<br>2008–77 | 1.1  | 168       |
| 15 | Stokes and anti-Stokes double resonance Raman scattering in two-dimensional graphite. Physical<br>Review B, 2002, 66, .                                                                                                                                                                                                | 1.1  | 152       |
| 16 | Characterization of Few-Layer 1T′ MoTe <sub>2</sub> by Polarization-Resolved Second Harmonic<br>Generation and Raman Scattering. ACS Nano, 2016, 10, 9626-9636.                                                                                                                                                        | 7.3  | 148       |
| 17 | Disentangling contributions of point and line defects in the Raman spectra of graphene-related materials. 2D Materials, 2017, 4, 025039.                                                                                                                                                                               | 2.0  | 146       |
| 18 | Localization of lattice dynamics in low-angle twisted bilayer graphene. Nature, 2021, 590, 405-409.                                                                                                                                                                                                                    | 13.7 | 139       |

| #  | Article                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Raman evidence for pressure-induced formation of diamondene. Nature Communications, 2017, 8, 96.                                                        | 5.8  | 132       |
| 20 | Resonance effects on the Raman spectra of graphene superlattices. Physical Review B, 2013, 88, .                                                        | 1.1  | 128       |
| 21 | Roomâ€Temperature Compressionâ€Induced Diamondization of Fewâ€Layer Graphene. Advanced Materials,<br>2011, 23, 3014-3017.                               | 11.1 | 124       |
| 22 | Tipâ€enhanced Raman spectroscopy of carbon nanotubes. Journal of Raman Spectroscopy, 2009, 40,<br>1420-1426.                                            | 1.2  | 122       |
| 23 | Origin of the 2450cmâ^'1 Raman bands in HOPG, single-wall and double-wall carbon nanotubes. Carbon, 2005, 43, 1049-1054.                                | 5.4  | 120       |
| 24 | Determination of two-dimensional phonon dispersion relation of graphite by Raman spectroscopy.<br>Physical Review B, 2002, 65, .                        | 1.1  | 99        |
| 25 | Raman spectroscopy of twisted bilayer graphene. Solid State Communications, 2013, 175-176, 3-12.                                                        | 0.9  | 90        |
| 26 | Second Harmonic Generation in WSe <sub>2</sub> . 2D Materials, 2015, 2, 045015.                                                                         | 2.0  | 88        |
| 27 | Raman spectroscopy analysis of number of layers in mass-produced graphene flakes. Carbon, 2020, 161,<br>181-189.                                        | 5.4  | 87        |
| 28 | Raman scattering study of the phonon dispersion in twisted bilayer graphene. Nano Research, 2013, 6,<br>269-274.                                        | 5.8  | 85        |
| 29 | Group theory for structural analysis and lattice vibrations in phosphorene systems. Physical Review<br>B, 2015, 91, .                                   | 1.1  | 82        |
| 30 | Mechanism of Near-Field Raman Enhancement in One-Dimensional Systems. Physical Review Letters,<br>2009, 103, 186101.                                    | 2.9  | 71        |
| 31 | Low Temperature Raman Study of the Electron Coherence Length near Graphene Edges. Nano Letters,<br>2011, 11, 1177-1181.                                 | 4.5  | 70        |
| 32 | Spatial Coherence in Near-Field Raman Scattering. Physical Review Letters, 2014, 113, 186101.                                                           | 2.9  | 63        |
| 33 | Tip-enhanced Raman mapping of local strain in graphene. Nanotechnology, 2015, 26, 175702.                                                               | 1.3  | 62        |
| 34 | The use of Raman spectroscopy to characterize the carbon materials found in Amazonian anthrosoils.<br>Journal of Raman Spectroscopy, 2013, 44, 283-289. | 1.2  | 59        |
| 35 | Tuning Localized Surface Plasmon Resonance in Scanning Near-Field Optical Microscopy Probes. ACS<br>Nano, 2015, 9, 6297-6304.                           | 7.3  | 59        |
| 36 | Mechanism of near-field Raman enhancement in two-dimensional systems. Physical Review B, 2012, 85, .                                                    | 1.1  | 52        |

| #  | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Perspectives on Raman spectroscopy of graphene-based systems: from the perfect two-dimensional surface to charcoal. Physical Chemistry Chemical Physics, 2012, 14, 15246.                                                                             | 1.3 | 50        |
| 38 | Modulating the Electronic Properties along Carbon Nanotubes via Tubeâ^'Substrate Interaction. Nano<br>Letters, 2010, 10, 5043-5048.                                                                                                                   | 4.5 | 49        |
| 39 | Optical absorption of graphite and single-wall carbon nanotubes. Applied Physics A: Materials Science and Processing, 2004, 78, 1099-1105.                                                                                                            | 1.1 | 47        |
| 40 | X-ray study of atomic ordering in self-assembled Ge islands grown on Si(001). Physical Review B, 2005,<br>72, .                                                                                                                                       | 1.1 | 45        |
| 41 | Two-Dimensional Molecular Crystals of Phosphonic Acids on Graphene. ACS Nano, 2011, 5, 394-398.                                                                                                                                                       | 7.3 | 43        |
| 42 | Giant and Tunable Anisotropy of Nanoscale Friction in Graphene. Scientific Reports, 2016, 6, 31569.                                                                                                                                                   | 1.6 | 41        |
| 43 | Graphene nanoribbon superlattices fabricated via He ion lithography. Applied Physics Letters, 2014, 104,                                                                                                                                              | 1.5 | 35        |
| 44 | Plasmonâ€Tunable Tip Pyramids: Monopole Nanoantennas for Nearâ€Field Scanning Optical Microscopy.<br>Advanced Optical Materials, 2018, 6, 1800528.                                                                                                    | 3.6 | 35        |
| 45 | Theory of Spatial Coherence in Near-Field Raman Scattering. Physical Review X, 2014, 4, .                                                                                                                                                             | 2.8 | 31        |
| 46 | Hard, transparent, sp3-containing 2D phase formed from few-layer graphene under compression.<br>Carbon, 2021, 173, 744-757.                                                                                                                           | 5.4 | 31        |
| 47 | Probing Spatial Phonon Correlation Length in Post-Transition Metal Monochalcogenide GaS Using<br>Tip-Enhanced Raman Spectroscopy. Nano Letters, 2019, 19, 7357-7364.                                                                                  | 4.5 | 30        |
| 48 | Micro-Raman spectroscopy of refractive index microstructures in silicone-based hydrogel polymers<br>created by high-repetition-rate femtosecond laser micromachining. Journal of the Optical Society of<br>America B: Optical Physics, 2009, 26, 595. | 0.9 | 26        |
| 49 | Studying 2D materials with advanced Raman spectroscopy: CARS, SRS and TERS. Physical Chemistry Chemical Physics, 2021, 23, 23428-23444.                                                                                                               | 1.3 | 26        |
| 50 | Optical studies of carbon nanotubes and nanographites. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 37, 88-92.                                                                                                                        | 1.3 | 22        |
| 51 | First and Second-Order Resonance Raman Process in Graphite and Single Wall Carbon Nanotubes.<br>Japanese Journal of Applied Physics, 2002, 41, 4878-4882.                                                                                             | 0.8 | 21        |
| 52 | Nanoscale mapping of carbon oxidation in pyrogenic black carbon from ancient Amazonian anthrosols. Environmental Sciences: Processes and Impacts, 2015, 17, 775-779.                                                                                  | 1.7 | 21        |
| 53 | Enhanced Mechanical Stability of Gold Nanotips through Carbon Nanocone Encapsulation. Scientific Reports, 2015, 5, 10408.                                                                                                                             | 1.6 | 21        |
| 54 | Depth dependence of black carbon structure, elemental and microbiological composition in anthropic<br>Amazonian dark soil. Soil and Tillage Research, 2016, 155, 298-307.                                                                             | 2.6 | 21        |

| #  | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Controlling the Morphology of Nanoflakes Obtained by Liquid-Phase Exfoliation: Implications for the<br>Mass Production of 2D Materials. ACS Applied Nano Materials, 2020, 3, 12095-12105.                       | 2.4 | 21        |
| 56 | Optical Nanoantennas for Tip-Enhanced Raman Spectroscopy. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27, 1-11.                                                                               | 1.9 | 21        |
| 57 | Twisted Bilayer Graphene: A Versatile Fabrication Method and the Detection of Variable Nanometric<br>Strain Caused by Twist-Angle Disorder. ACS Applied Nano Materials, 2021, 4, 1858-1866.                     | 2.4 | 19        |
| 58 | The Kataura plot for single wall carbon nanotubes on top of crystalline quartz. Physica Status Solidi<br>(B): Basic Research, 2010, 247, 2835-2837.                                                             | 0.7 | 18        |
| 59 | A semi-automated general statistical treatment of graphene systems. 2D Materials, 2020, 7, 025045.                                                                                                              | 2.0 | 17        |
| 60 | Raman spectroscopy polarization dependence analysis in two-dimensional gallium sulfide. Physical<br>Review B, 2020, 102, .                                                                                      | 1.1 | 16        |
| 61 | Linkage Between Micro- and Nano-Raman Spectroscopy of Defects in Graphene. Physical Review Applied, 2020, 14, .                                                                                                 | 1.5 | 15        |
| 62 | In Situ Atomic Force Microscopy Tip-Induced Deformations and Raman Spectroscopy Characterization of Single-Wall Carbon Nanotubes. Nano Letters, 2012, 12, 4110-4116.                                            | 4.5 | 14        |
| 63 | Nanofabrication of plasmon-tunable nanoantennas for tip-enhanced Raman spectroscopy. Journal of<br>Chemical Physics, 2020, 153, 114201.                                                                         | 1.2 | 14        |
| 64 | Nano-optical Imaging of In-Plane Homojunctions in Graphene and MoS <sub>2</sub> van der Waals<br>Heterostructures on Talc and SiO <sub>2</sub> . Journal of Physical Chemistry Letters, 2021, 12,<br>7625-7631. | 2.1 | 14        |
| 65 | Impact of substrate on tip-enhanced Raman spectroscopy: A comparison between field-distribution simulations and graphene measurements. Physical Review Research, 2020, 2, .                                     | 1.3 | 14        |
| 66 | Optical Properties of Plasmonâ€Tunable Tip Pyramids for Tipâ€Enhanced Raman Spectroscopy. Physica<br>Status Solidi - Rapid Research Letters, 2020, 14, 2000212.                                                 | 1.2 | 13        |
| 67 | Near-field Raman spectroscopy of nanocarbon materials. Faraday Discussions, 2015, 184, 193-206.                                                                                                                 | 1.6 | 11        |
| 68 | Physiological changes of the lichen Parmotrema tinctorum as result of carbon nanotubes exposition.<br>Ecotoxicology and Environmental Safety, 2015, 120, 110-116.                                               | 2.9 | 11        |
| 69 | Deepâ€learningâ€based denoising approach to enhance Raman spectroscopy in massâ€produced graphene.<br>Journal of Raman Spectroscopy, 2022, 53, 863-871.                                                         | 1.2 | 10        |
| 70 | Electro-optical interfacial effects on a graphene/Ï€-conjugated organic semiconductor hybrid system.<br>Beilstein Journal of Nanotechnology, 2018, 9, 963-974.                                                  | 1.5 | 8         |
| 71 | Vibrations in Graphene. , 2017, , 71-89.                                                                                                                                                                        |     | 7         |
| 72 | International interlaboratory comparison of Raman spectroscopic analysis of CVD-grown graphene.<br>2D Materials, 2022, 9, 035010.                                                                               | 2.0 | 7         |

| #  | Article                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Topological vectors as a fingerprinting system for 2D-material flake distributions. Npj 2D Materials and Applications, 2021, 5, .                                                     | 3.9 | 6         |
| 74 | Raman spectra of multilayer graphene under high temperatures. Journal of Physics Condensed Matter,<br>2020, 32, 385704.                                                               | 0.7 | 6         |
| 75 | Raman Spectroscopy: Characterization of Edges, Defects, and the Fermi Energy of Graphene and sp 2<br>Carbons. Nanoscience and Technology, 2011, , 15-55.                              | 1.5 | 5         |
| 76 | Observing the Angular Distribution of Raman Scattered Fields. ACS Nano, 2016, 10, 1722-1723.                                                                                          | 7.3 | 5         |
| 77 | Tip-enhanced Raman Spectroscopy of Graphene. , 2019, , .                                                                                                                              |     | 5         |
| 78 | Event chronology analysis of the historical development of tipâ€enhanced Raman spectroscopy. Journal of Raman Spectroscopy, 2021, 52, 587-599.                                        | 1.2 | 5         |
| 79 | Strain Discontinuity, Avalanche, and Memory in Carbon Nanotube Serpentine Systems. Nano Letters, 2015, 15, 5899-5904.                                                                 | 4.5 | 4         |
| 80 | Near-field coherence reveals defect densities in atomic monolayers. Optica, 2017, 4, 527.                                                                                             | 4.8 | 4         |
| 81 | Nanomechanics of few-layer materials: do individual layers slide upon folding?. Beilstein Journal of<br>Nanotechnology, 2020, 11, 1801-1808.                                          | 1.5 | 4         |
| 82 | Tip-Enhanced Spectroscopy and Imaging of Carbon Nanomaterials. World Scientific Series on Carbon<br>Nanoscience, 2019, , 175-221.                                                     | 0.1 | 4         |
| 83 | Nanowires and Nanoribbons Formed by Methylphosphonic Acid. Journal of Nanoscience and Nanotechnology, 2007, 7, 3071-3080.                                                             | 0.9 | 3         |
| 84 | Passive near-field imaging with pseudo-thermal sources. Optics Letters, 2017, 42, 1137.                                                                                               | 1.7 | 3         |
| 85 | Protocol and reference material for measuring the nanoantenna enhancement factor in Tip-enhanced Raman Spectroscopy. , 2019, , .                                                      |     | 3         |
| 86 | Inclusion of the sample-tip interaction term in the theory of tip-enhanced Raman spectroscopy.<br>Physical Review B, 2022, 105, .                                                     | 1.1 | 3         |
| 87 | Electron Microscopy and Spectroscopy Analysis of Carbon Nanostructures in Highly Fertile<br>Amazonian Anthrosoils. Microscopy and Microanalysis, 2012, 18, 1502-1503.                 | 0.2 | 2         |
| 88 | Resonance Raman Spectroscopy to Study and Characterize Defects on Carbon Nanotubes and other<br>Nano-Graphite Systems. Materials Research Society Symposia Proceedings, 2004, 858, 1. | 0.1 | 1         |
| 89 | Trigonal Anisotropy in Graphite and Carbon Nanotubes. Molecular Crystals and Liquid Crystals, 2006, 455, 287-294.                                                                     | 0.4 | 1         |
| 90 | Raman Spectroscopy to Study Disorder and Perturbations in sp[sup 2] Nano-Carbons. , 2010, , .                                                                                         |     | 1         |

6

| #   | Article                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Vision-based position control applied to probe positioning for Tip Enhanced Raman Spectroscopy. , 2016, , .                                           |     | 1         |
| 92  | Study of the interaction between light and nanoantennas in Tip-Enhanced Raman Spectroscopy. , 2019, , .                                               |     | 1         |
| 93  | Disorder and Defects in Two-Dimensional Materials Probed by Raman Spectroscopy. Springer Series in<br>Materials Science, 2019, , 99-110.              | 0.4 | 1         |
| 94  | Study of Carbon Nanostructures for Soil Fertility Improvement. Nanomedicine and Nanotoxicology, 2016, , 85-104.                                       | 0.1 | 1         |
| 95  | Spectroscopy of small diameter single-wall carbon nanotubes. AIP Conference Proceedings, 2005, , .                                                    | 0.3 | 0         |
| 96  | Raman spectroscopic study of silicone-based hydrogel polymers with large index changes induced by femtosecond laser micromachining. , 2008, , .       |     | 0         |
| 97  | The role of interference and polarization effects in the optical visualization of carbon nanotubes.<br>Journal of Applied Physics, 2013, 113, 084314. | 1.1 | 0         |
| 98  | Polarization Dependence of the Second Harmonic Generation and Raman Scattering from Atomically Thin MoTe2. , 2016, , .                                |     | 0         |
| 99  | Quantifying Defect Densities in Monolayer Graphene Using Near-field Coherence Measurements. , 2016, , .                                               |     | 0         |
| 100 | Near-field imaging with pseudo-thermal sources. , 2017, , .                                                                                           |     | 0         |

Near-field imaging with pseudo-thermal sources. , 2017, , . 100