
Gouranga Upadhyaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7571638/publications.pdf Version: 2024-02-01

#	Article	IF	CITATION
1	Dehydrins Impart Protection against Oxidative Stress in Transgenic Tobacco Plants. Frontiers in Plant Science, 2018, 9, 136.	3.6	52
2	YSK2 Type Dehydrin (SbDhn1) from Sorghum bicolor Showed Improved Protection under High Temperature and Osmotic Stress Condition. Frontiers in Plant Science, 2017, 8, 918.	3.6	45
3	Different dehydrins perform separate functions in Physcomitrella patens. Planta, 2017, 245, 101-118.	3.2	38
4	Glycine rich proline rich protein from Sorghum bicolor serves as an antimicrobial protein implicated in plant defense response. Plant Molecular Biology, 2019, 101, 95-112.	3.9	14
5	A rice <scp>R2R3â€MYB</scp> (<scp><i>OsC1</i></scp>) transcriptional regulator improves oxidative stress tolerance by modulating anthocyanin biosynthesis. Physiologia Plantarum, 2021, 173, 2334-2349.	5.2	13
6	Multiple copies of a novel amphipathic α-helix forming segment in Physcomitrella patens dehydrin play a key role in abiotic stress mitigation. Journal of Biological Chemistry, 2021, 296, 100596.	3.4	7
7	NBS1 protein from Physcomitrium patens confers protection against oxidative damage by limiting the accumulation of cellular reactive oxygen species. Plant Physiology and Biochemistry, 2022, 180, 81-90.	5.8	2