Rodrigo Ortega-Toro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7571382/publications.pdf

Version: 2024-02-01

41 papers

1,214 citations

18 h-index 34 g-index

41 all docs

41 docs citations

41 times ranked

1342 citing authors

#	Article	IF	CITATIONS
1	Effect of the Addition of High-Protein Hydrolyzed Flour from <i>Oncorhynchus mykiss</i> Byproducts on the Properties of an Extruded Feed. ACS Omega, 2022, 7, 2554-2564.	1.6	4
2	Kinetics and Adsorption Equilibrium in the Removal of Azo-Anionic Dyes by Modified Cellulose. Sustainability, 2022, 14, 3640.	1.6	40
3	In-depth study from gluten/PCL-based food packaging films obtained under reactive extrusion conditions using chrome octanoate as a potential food grade catalyst. Food Hydrocolloids, 2021, 111, 106255.	5.6	44
4	Design and Application of Hydrocolloids from Butternut Squash (<i>Cucurbita moschata</i>) Epidermis as a Food Additive in Mayonnaise-type Sauces. ACS Omega, 2021, 6, 5499-5508.	1.6	18
5	Epoxidised sesame oil as a biobased coupling agent and plasticiser in polylactic acid/thermoplastic yam starch blends. Heliyon, 2021, 7, e06176.	1.4	24
6	Physicochemical Properties of Composite Materials Based on Thermoplastic Yam Starch and Polylactic Acid Improved with the Addition of Epoxidized Sesame Oil. Journal of Polymers and the Environment, 2021, 29, 3324-3334.	2.4	10
7	Potential Use of Residual Sawdust of Eucalyptus globulus Labill in Pb (II) Adsorption: Modelling of the Kinetics and Equilibrium. Applied Sciences (Switzerland), 2021, 11, 3125.	1.3	13
8	Rheological Study of an Extruded Fish Diet with the Addition of Hydrolyzed Protein Flour. Applied Sciences (Switzerland), 2021, 11, 8105.	1.3	2
9	Advances in thermoplastic starch-based biopolymers: Fabrication and improvement., 2021,, 205-255.		1
10	Batch and Packed Bed Column Study for the Removal of Cr (VI) and Ni (II) Using Agro-Industrial Wastes. Applied Sciences (Switzerland), 2021, 11, 9355.	1.3	3
11	Effect of Different Essential Oils on the Properties of Edible Coatings Based on Yam (Dioscorea) Tj ETQq1 1 0.7 Sciences (Switzerland), 2021, 11, 11057.	784314 rgB1 1.3	BT /Overlock 10 18
12	Development and evaluation of edible films based on cassava starch, whey protein, and bees wax. Heliyon, 2020, 6, e04884.	1.4	39
13	Effect of a multifunctional edible coating based on cassava starch on the shelf life of Andean blackberry. Heliyon, 2020, 6, e03974.	1.4	22
14	Adsorption Thermodynamics of Cr(VI) Removal by using Agro-Industrial Waste of Oil Palm Bagasse and Plantain Peels. Ingenieria E Investigacion, 2020, 40, 22-28.	0.2	3
15	Determination of Kinetic Parameters in the Biosorption of Chromium (VI) in Aqueous Solution. IngenierÃa Y Ciencia, 2020, 16, 129-143.	0.3	6
16	Cr(VI) biosorption: Effect of temperature, particle size and bed height. Revista Facultad De IngenierÃa, 2020, , 78-86.	0.5	1
17	Evaluation of the use of plantain starch as a natural coagulant for the removal of colour and turbidity in water for human consumption. Revista EIA, 2020, 17, .	0.0	O
18	Poly (Lactic Acid)/Thermoplastic Starch Films: Effect of Cardoon Seed Epoxidized Oil on Their Chemicophysical, Mechanical, and Barrier Properties. Coatings, 2019, 9, 574.	1.2	64

#	Article	IF	CITATIONS
19	Using lignocellulosic fractions of coffee husk to improve properties of compatibilised starch-PLA blend films. Food Packaging and Shelf Life, 2019, 22, 100423.	3.3	22
20	Improving properties of thermoplastic starch films by incorporating active extracts and cellulose fibres isolated from rice or coffee husk. Food Packaging and Shelf Life, 2019, 22, 100383.	3.3	56
21	Using grafted poly(ε-caprolactone) for the compatibilization of thermoplastic starch-polylactic acid blends. Reactive and Functional Polymers, 2019, 142, 25-35.	2.0	32
22	Propiedades Microestructurales y Ópticas de PelÃculas Biodegradables a Base de Almidón Termoplástico y Poli (ε-Caprolactona) con Actividad Antioxidante. Informacion Tecnologica (discontinued), 2019, 30, 293-300.	0.1	2
23	Estudio Termodinámico de la Remoción de NÃquel y Cromo en Solución Acuosa usando Adsorbentes de Origen Agroindustrial. Informacion Tecnologica (discontinued), 2019, 30, 3-10.	0.1	5
24	Isolation and characterisation of microcrystalline cellulose and cellulose nanocrystals from coffee husk and comparative study with rice husk. Carbohydrate Polymers, 2018, 191, 205-215.	5.1	195
25	Propiedades Fisicoqu $ ilde{A}$ micas, Funcionales y Microbiol $ ilde{A}^3$ gicas de Lechuga (Lactuca sativa L.) adicionada con $ ilde{A}$ cidos Org $ ilde{A}_1$ nicos. Informacion Tecnologica (discontinued), 2018, 29, 21-30.	0.1	0
26	Design of an Emulgel-Type Cosmetic with Antioxidant Activity Using Active Essential Oil Microcapsules of Thyme (<i>Thymus vulgaris</i> L.), Cinnamon (<i>Cinnamomum verum</i> J.), and Clove (<i>Eugenia) Tj ETC</i>	Qq0 Q.2 0 rgB	T / O verlock 1
27	Reinforcement of Thermoplastic Starch Films with Cellulose Fibres Obtained from Rice and Coffee Husks. Journal of Renewable Materials, 2018, 6, 599-610.	1.1	32
28	Epoxidised soybean oil addition into starch- and PLA-based biocomposites. Contemporary Engineering Sciences, 2018, 11, 1953-1960.	0.2	1
29	Properties of Micro- and Nano-Reinforced Biopolymers for Food Applications. , 2018, , 61-99.		7
30	Efecto del almacenamiento sobre uchuva adicionada con componentes fisiol \tilde{A}^3 gicamente activos y deshidratada por aire caliente. Revista U D C A Actualidad & Divulgaci \tilde{A}^3 n Cient \tilde{A}^3 fica, 2018, 21, .	0.1	0
31	Antifungal starch-based edible films containing Aloe vera. Food Hydrocolloids, 2017, 72, 1-10.	5.6	59
32	Future of Starch-Based Materials in Food Packaging. , 2017, , 257-312.		17
33	Biocompuestos a base de almid \tilde{A}^3 n termopl \tilde{A}_i stico, \tilde{A}_i cido polil \tilde{A}_i ctico y cascarilla de arroz: efecto del aceite epoxidado de soya. Publicaciones E Investigaci \tilde{A}^3 n, 2017, 11, 49-55.	0.1	1
34	Enhancement of interfacial adhesion between starch and grafted poly(Îμ-caprolactone). Carbohydrate Polymers, 2016, 147, 16-27.	5.1	56
35	Improvement of properties of glycerol plasticized starch films by blending with a low ratio of polycaprolactone and/or polyethylene glycol. Food Hydrocolloids, 2016, 56, 9-19.	5.6	53
36	Influence of citric acid on the properties and stability of starchâ€polycaprolactone based films. Journal of Applied Polymer Science, 2016, 133, .	1.3	41

#	Article	IF	CITATIONS
37	Active bilayer films of thermoplastic starch and polycaprolactone obtained by compression molding. Carbohydrate Polymers, 2015, 127, 282-290.	5.1	72
38	Physical and structural properties and thermal behaviour of starch-poly(É)-caprolactone) blend films for food packaging. Food Packaging and Shelf Life, 2015, 5, 10-20.	3.3	63
39	Effect of the incorporation of surfactants on the physical properties of corn starch films. Food Hydrocolloids, 2014, 38, 66-75.	5.6	90
40	Properties of starch–hydroxypropyl methylcellulose based films obtained by compression molding. Carbohydrate Polymers, 2014, 109, 155-165.	5.1	82
41	Adsorption in a binary system of Pb (II) and Ni (II) using lemon peels. Revista Facultad De IngenierÃa, O, , .	0.5	3