Yin Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/757115/publications.pdf Version: 2024-02-01

YIN XIAO

#	Article	IF	CITATIONS
1	Core–Shell Three-Dimensional Perovskite Nanocrystals with Chiral-Induced Spin Selectivity for Room-Temperature Spin Light-Emitting Diodes. Journal of the American Chemical Society, 2022, 144, 9707-9714.	13.7	47
2	Negatively charged cyclodextrins: Synthesis and applications in chiral analysis-A review. Carbohydrate Polymers, 2021, 256, 117517.	10.2	25
3	Advances of enantioselective solid membranes. New Journal of Chemistry, 2021, 45, 6586-6599.	2.8	14
4	Click preparation of multiple-thioether bridged cyclodextrin chiral materials for efficient enantioseparation in high-performance liquid chromatography. Analyst, The, 2021, 146, 3025-3033.	3.5	16
5	Recent Advances of Molecularly Imprinted Polymers Based on Cyclodextrin. Macromolecular Rapid Communications, 2021, 42, e2100004.	3.9	23
6	Non-Doped Deep-Blue OLEDs Based on Carbazole-ï€-Imidazole Derivatives. Materials, 2021, 14, 2349.	2.9	9
7	Construction and Application of Graphene Oxide-Bovine Serum Albumin Modified Extended Gate Field Effect Transistor Chiral Sensor. Sensors, 2021, 21, 3921.	3.8	4
8	Chirality in polythiophenes: A review. Chirality, 2021, 33, 424-446.	2.6	11
9	Highly sensitive gas sensing platforms based on field effect Transistor-A review. Analytica Chimica Acta, 2021, 1172, 338575.	5.4	26
10	Nacre-like ultra-robust supramolecular-functionalized graphene oxide membrane for bifunctional separation. Carbon, 2021, 184, 618-626.	10.3	13
11	A Bio-inspired Extended-Gate Metal-Oxide-Semiconductor Field-Effect-Transistor for Highly Sensitive Amino Acid Enantiodiscrimination. Analytical Chemistry, 2021, 93, 14425-14431.	6.5	7
12	Engineering a cationic supramolecular charge switch for facile amino acids enantiodiscrimination based on extended-gate field effect transistors. Chinese Chemical Letters, 2021, , .	9.0	7
13	Cyclodextrin derivatives functionalized highly sensitive chiral sensor based on organic field-effect transistor. Chinese Chemical Letters, 2020, 31, 99-102.	9.0	20
14	Mixed-ligand engineering of quasi-2D perovskites for efficient sky-blue light-emitting diodes. Journal of Materials Chemistry C, 2020, 8, 1319-1325.	5.5	39
15	Determination of Kynurenine Enantiomers by Alpha-Cyclodextrin, Cationic-βeta-Cyclodextrin and Their Synergy Complemented with Stacking Enrichment in Capillary Electrophoresis. Journal of Chromatography A, 2020, 1622, 461128.	3.7	12
16	Surface Regulation of CsPbBr ₃ Quantum Dots for Standard Blueâ€Emission with Boosted PLQY. Advanced Optical Materials, 2020, 8, 2000167.	7.3	30
17	Recent Advances in Immobilization Strategies for Biomolecules in Sensors Using Organic Field-Effect Transistors. Transactions of Tianjin University, 2020, 26, 424-440.	6.4	18
18	Chirality Discrimination at the Single Molecule Level by Using a Cationic Supermolecule Quasi-Gated Organic Field Effect Transistor. ACS Sensors, 2019, 4, 2009-2017.	7.8	14

Υιν Χιαο

#	Article	IF	CITATIONS
19	Recent advances in cyclodextrins-based chiral-recognizing platforms. TrAC - Trends in Analytical Chemistry, 2019, 121, 115691.	11.4	41
20	From inorganic precipitation to organic aggregation: solubility product constant-mediated specific metal-ion lighting-up using a triazolium iodide organic fluorescence tag. Analyst, The, 2019, 144, 1654-1659.	3.5	6
21	Polymorph-induced photosensitivity change in titanylphthalocyanine revealed by the charge transfer integral. Nanophotonics, 2019, 8, 787-797.	6.0	7
22	A highly sensitive and versatile chiral sensor based on a top-gate organic field effect transistor functionalized with thiolated β-cyclodextrin. Analyst, The, 2019, 144, 2611-2617.	3.5	21
23	Surface modification of magnesium hydroxide by wet process and effect on the thermal stability of silicone rubber. Applied Surface Science, 2019, 465, 740-746.	6.1	41
24	Suppressing defects through thiadiazole derivatives that modulate CH ₃ NH ₃ PbI ₃ crystal growth for highly stable perovskite solar cells under dark conditions. Journal of Materials Chemistry A, 2018, 6, 4971-4980.	10.3	95
25	Impact of Peripheral Groups on Phenothiazine-Based Hole-Transporting Materials for Perovskite Solar Cells. ACS Energy Letters, 2018, 3, 1145-1152.	17.4	125
26	Alcoholâ€Soluble Electronâ€Transport Materials for Fully Solutionâ€Processed Green PhOLEDs. Chemistry - an Asian Journal, 2018, 13, 1335-1341.	3.3	10
27	A Novel <i>trans</i> â€1â€(9â€Anthryl)â€2â€phenylethene Derivative Containing a Phenanthroimidazole Unit for Application in Organic Lightâ€Emitting Diodes. Chemistry - an Asian Journal, 2018, 13, 81-88.	3.3	14
28	Smartly designed AIE triazoliums as unique targeting fluorescence tags for sulfonic biomacromolecule recognition <i>via</i> †electrostatic locking'. Journal of Materials Chemistry C, 2018, 6, 12529-12536.	5.5	10
29	Boosting the Stability of Perovskite Solar Cells through a Dopantâ€Free Tetraphenylbenzidineâ€Based Hole Transporting Material. ChemistrySelect, 2018, 3, 13032-13037.	1.5	6
30	A Chiral Organic Field-Effect Transistor with a Cyclodextrin Modulated Copper Hexadecafluorophthalocyanine Semiconductive Layer as the Sensing Unit. Analytical Chemistry, 2018, 90, 9264-9271.	6.5	20
31	Enhanced stability and optoelectronic properties of MAPbI ₃ films by a cationic surface-active agent for perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 10825-10834.	10.3	81
32	Organic Singleâ€Crystalline Donor–Acceptor Heterojunctions with Ambipolar Bandâ€Like Charge Transport for Photovoltaics. Advanced Materials Interfaces, 2018, 5, 1800336.	3.7	18
33	Thiolâ€ene click derived structurally wellâ€defined per(3,5â€dimethyl)phenylcarbamoylated cationic cyclodextrin separation material for achiral and chiral chromatography. Journal of Separation Science, 2018, 41, 2710-2718.	2.5	24
34	Stable Perovskite Solar Cells based on Hydrophobic Triphenylamine Holeâ€Transport Materials. Energy Technology, 2017, 5, 312-320.	3.8	31
35	2,9,16,23-Tetrakis(7-coumarinoxy-4-methyl)- metallophthalocyanines -based hole transporting material for mixed-perovskite solar cells. Synthetic Metals, 2017, 226, 1-6.	3.9	20
36	Isomerâ€Pure Bisâ€PCBMâ€Assisted Crystal Engineering of Perovskite Solar Cells Showing Excellent Efficiency and Stability. Advanced Materials, 2017, 29, 1606806.	21.0	320

Υιν Χιαο

#	Article	IF	CITATIONS
37	The modulation of opto-electronic properties of CH3NH3PbBr3 crystal. Journal of Materials Science: Materials in Electronics, 2017, 28, 11053-11058.	2.2	12
38	Tuning the crystal growth of perovskite thin-films by adding the 2-pyridylthiourea additive for highly efficient and stable solar cells prepared in ambient air. Journal of Materials Chemistry A, 2017, 5, 13448-13456.	10.3	96
39	Dopantâ€Free Holeâ€Transport Material with a Tetraphenylethene Core for Efficient Perovskite Solar Cells. Energy Technology, 2017, 5, 1257-1264.	3.8	19
40	A Novel Spiro[acridineâ€9,9′â€fluorene] Derivatives Containing Phenanthroimidazole Moiety for Deepâ€Blue OLED Application. Chemistry - an Asian Journal, 2017, 12, 3069-3076.	3.3	30
41	Dopant-free and low-cost molecular "bee―hole-transporting materials for efficient and stable perovskite solar cells. Journal of Materials Chemistry C, 2017, 5, 11429-11435.	5.5	40
42	Over 20% PCE perovskite solar cells with superior stability achieved by novel and low-cost hole-transporting materials. Nano Energy, 2017, 41, 469-475.	16.0	232
43	Enantioseparation of single layer native cyclodextrin chiral stationary phases: Effect of cyclodextrin orientation and a modeling study. Analytica Chimica Acta, 2017, 990, 174-184.	5.4	32
44	Efficient, Stable, Dopantâ€Free Holeâ€Transport Material with a Triphenylamine Core for CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells. Energy Technology, 2017, 5, 1173-1178.	3.8	25
45	Small molecular hole-transporting and emitting materials for hole-only green organic light-emitting devices. Dyes and Pigments, 2016, 131, 41-48.	3.7	22
46	A trap-assisted ultrasensitive near-infrared organic photomultiple photodetector based on Y-type titanylphthalocyanine nanoparticles. Journal of Materials Chemistry C, 2016, 4, 5584-5592.	5.5	27
47	Engineering Thiol–Ene Click Chemistry for the Fabrication of Novel Structurally Well-Defined Multifunctional Cyclodextrin Separation Materials for Enhanced Enantioseparation. Analytical Chemistry, 2016, 88, 4955-4964.	6.5	67
48	Dopantâ€Free Donor (D)–Ĩ€â€"D–Ĩ€â€"D Conjugated Holeâ€Transport Materials for Efficient and Stable Perovskite Solar Cells. ChemSusChem, 2016, 9, 2578-2585.	6.8	83
49	Studies on the dispersity of polymethacrylate-grafted carbon black in a non-aqueous medium: the influence of monomer structure. Journal of Materials Science: Materials in Electronics, 2016, 27, 2022-2030.	2.2	4
50	Single component p-, ambipolar and n-type OTFTs based on fluorinated copper phthalocyanines. Dyes and Pigments, 2016, 132, 378-386.	3.7	37
51	Improvement in photovoltaic performance of perovskite solar cells by interface modification and co-sensitization with novel asymmetry 7-coumarinoxy-4-methyltetrasubstituted metallophthalocyanines. Synthetic Metals, 2016, 220, 187-193.	3.9	21
52	A Novel Dopantâ€Free Triphenylamine Based Molecular "Butterfly―Holeâ€Transport Material for Highly Efficient and Stable Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1600401.	19.5	161
53	Molecular design and photovoltaic performance of a novel thiocyanate-based layered organometal perovskite material. Synthetic Metals, 2016, 215, 56-63.	3.9	31
54	Studies on the charging behaviors of copper chromite black in nonpolar media with nonionic surfactants for electrophoretic displays. Journal of Materials Chemistry C, 2016, 4, 323-330.	5.5	7

Υίν Χιαό

#	Article	IF	CITATIONS
55	Film-forming hole transporting materials for high brightness flexible organic light-emitting diodes. Dyes and Pigments, 2016, 125, 36-43.	3.7	13
56	Recent Progress of Perovskite Solar Cells. Current Nanoscience, 2016, 12, 137-156.	1.2	39
57	Preparation of titanium dioxide nanoparticles modified with methacrylate and their electrophoretic properties. Journal of Materials Science: Materials in Electronics, 2015, 26, 5263-5269.	2.2	2
58	Synthesis of novel s-triazine/carbazole based bipolar molecules and their application in phosphorescent OLEDs. Journal of Materials Science: Materials in Electronics, 2015, 26, 6563-6571.	2.2	4
59	Simple Triphenylamine-Based Hole-Transporting Materials for Perovskite Solar Cells. Electrochimica Acta, 2015, 182, 733-741.	5.2	57
60	Charging behavior of carbon black in a low-permittivity medium based on acid–base charging theory. Journal of Materials Chemistry C, 2015, 3, 3980-3988.	5.5	9
61	Titanylphthalocyanine as hole transporting material for perovskite solar cells. Journal of Energy Chemistry, 2015, 24, 756-761.	12.9	28
62	Efficient CH3NH3PbI3 perovskite solar cells with 2TPA-n-DP hole-transporting layers. Nano Research, 2015, 8, 1116-1127.	10.4	65
63	Preparation of titanium dioxide nano-particles modified with poly (methyl methacrylate) and its electrorheological characteristics in Isopar L. Colloid and Polymer Science, 2015, 293, 473-479.	2.1	7
64	Thermally induced crystallization behavior and film microstructure alteration of N,N,N′,N′-tetraphenylbenzidine (TPB) and N,N,N′,N′-tetra-p-tolyl-benzidine (TTB). Organic Electronics 15, 1876-1883.	, 20164,	9
65	Novel hole transporting materials with a linear π-conjugated structure for highly efficient perovskite solar cells. Chemical Communications, 2014, 50, 5829.	4.1	132
66	Simple Way to Engineer Metal–Semiconductor Interface for Enhanced Performance of Perovskite Organic Lead Iodide Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 5651-5656.	8.0	93
67	Energy level tuning of TPB-based hole-transporting materials for highly efficient perovskite solar cells. Chemical Communications, 2014, 50, 15239-15242.	4.1	134
68	Preparation and properties of red inorganic hollow nanospheres for electrophoretic display. Applied Surface Science, 2014, 317, 319-324.	6.1	14
69	Novel photochromic and electrochromic diarylethenes bearing triphenylamine units. RSC Advances, 2014, 4, 16839-16848.	3.6	15
70	A thin pristine non-triarylamine hole-transporting material layer for efficient CH ₃ NH ₃ PbI ₃ perovskite solar cells. RSC Advances, 2014, 4, 32918.	3.6	35
71	Study on synthesis and properties of novel luminescent hole transporting materials based on N,N′-di(p-tolyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine core. Dyes and Pigments, 2013, 97, 92-99.	3.7	16
72	Synthesis and properties of new luminescent hole transporting materials containing triphenylamine and carbazole units. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 98, 215-221.	3.9	11

Υιν Χιαο

#	Article	IF	CITATIONS
73	Recent development of cyclodextrin chiral stationary phases and their applications in chromatography. Journal of Chromatography A, 2012, 1269, 52-68.	3.7	213
74	Enantioseparation of dansyl amino acids by ultra-high pressure liquid chromatography using cationic β-cyclodextrins as chiral additives. Analyst, The, 2011, 136, 1433.	3.5	26
75	Chiral capillary electrophoresis with cationic pyrrolidiniumâ€Î²â€cyclodextrin derivatives as chiral selectors. Journal of Separation Science, 2010, 33, 1797-1805.	2.5	38
76	Application of Clickâ€chemistryâ€based perphenylcarbamated βâ€CD chiral stationary phase in CEC. Electrophoresis, 2009, 30, 705-711.	2.4	33
77	Synthesis and application of a novel single-isomer mono-6-deoxy-6-(3R,4R-dihydroxypyrrolidine)-β-cyclodextrin chloride as a chiral selector in capillary electrophoresis. Journal of Chromatography A, 2009, 1216, 994-999.	3.7	27
78	Click chemistry for facile immobilization of cyclodextrin derivatives onto silica as chiral stationary phases. Tetrahedron Letters, 2008, 49, 5190-5191.	1.4	74