Victor Starov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7571067/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermodynamic and kinetic aspects of fat crystallization. Advances in Colloid and Interface Science, 2006, 122, 3-33.	7.0	410
2	Recent advances in droplet wetting and evaporation. Chemical Society Reviews, 2018, 47, 558-585.	18.7	261
3	A unifying model for concentration polarization, gel-layer formation and particle deposition in cross-flow membrane filtration of colloidal suspensions. Chemical Engineering Science, 2002, 57, 77-91.	1.9	188
4	Particle laden fluid interfaces: Dynamics and interfacial rheology. Advances in Colloid and Interface Science, 2014, 206, 303-319.	7.0	164
5	The shape of the transition zone between a thin film and bulk liquid and the line tension. Journal of Colloid and Interface Science, 1982, 89, 16-24.	5.0	154
6	Current applications of foams formed from mixed surfactant–polymer solutions. Advances in Colloid and Interface Science, 2015, 222, 670-677.	7.0	152
7	Effect of synthetic surfactants on the environment and the potential for substitution by biosurfactants. Advances in Colloid and Interface Science, 2021, 288, 102340.	7.0	151
8	Fluoro- vs hydrocarbon surfactants: Why do they differ in wetting performance?. Advances in Colloid and Interface Science, 2014, 210, 65-71.	7.0	147
9	Kinetics of wetting and spreading by aqueous surfactant solutions. Advances in Colloid and Interface Science, 2008, 144, 54-65.	7.0	135
10	Spreading of Liquid Drops over Dry Porous Layers: Complete Wetting Case. Journal of Colloid and Interface Science, 2002, 252, 397-408.	5.0	134
11	Performance of modified poly(vinylidene fluoride) membrane for textile wastewater ultrafiltration. Desalination, 2011, 282, 87-94.	4.0	115
12	Spreading of liquid drops over porous substrates. Advances in Colloid and Interface Science, 2003, 104, 123-158.	7.0	109
13	Effect of solvents on performance of polyethersulfone ultrafiltration membranes: Investigation of metal ion separations. Desalination, 2011, 267, 57-63.	4.0	98
14	Simultaneous spreading and evaporation: Recent developments. Advances in Colloid and Interface Science, 2014, 206, 382-398.	7.0	90
15	Wetting of low free energy surfaces by aqueous surfactant solutions. Current Opinion in Colloid and Interface Science, 2011, 16, 285-291.	3.4	89
16	Evaporation of Droplets of Surfactant Solutions. Langmuir, 2013, 29, 10028-10036.	1.6	87
17	Adhesion models: From single to multiple asperity contacts. Advances in Colloid and Interface Science, 2011, 168, 210-222.	7.0	85
18	Spreading of Surfactant Solutions over Hydrophobic Substrates. Journal of Colloid and Interface Science, 2000, 227, 185-190.	5.0	83

#	Article	IF	CITATIONS
19	Equilibrium and hysteresis contact angles. Advances in Colloid and Interface Science, 1992, 39, 147-173.	7.0	82
20	Spreading of Liquid Drops over Saturated Porous Layers. Journal of Colloid and Interface Science, 2002, 246, 372-379.	5.0	82
21	Reverse osmosis of multicomponent electrolyte solutions Part I. Theoretical development. Journal of Membrane Science, 1997, 128, 23-37.	4.1	80
22	Spreading of liquid drops over dry surfaces. Advances in Colloid and Interface Science, 1994, 50, 187-221.	7.0	78
23	Evaporation of sessile water droplets: Universal behaviour in presence of contact angle hysteresis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 391, 135-144.	2.3	75
24	Evaporation of sessile droplets. Current Opinion in Colloid and Interface Science, 2014, 19, 336-342.	3.4	75
25	Asymmetry of diffusion permeability of bi-layer membranes. Advances in Colloid and Interface Science, 2008, 139, 29-44.	7.0	70
26	Concentrated dispersions of charged colloidal particles: Sedimentation, ultrafiltration and diffusion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1993, 81, 65-81.	2.3	68
27	Critical wetting concentrations of trisiloxane surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 354, 143-148.	2.3	68
28	Surfactant solutions and porous substrates: spreading and imbibition. Advances in Colloid and Interface Science, 2004, 111, 3-27.	7.0	65
29	Hydrodynamic permeability of aggregates of porous particles with an impermeable core. Advances in Colloid and Interface Science, 2011, 164, 21-37.	7.0	63
30	Static and dynamic wetting of soft substrates. Current Opinion in Colloid and Interface Science, 2018, 36, 46-57.	3.4	63
31	Instantaneous distribution of fluxes in the course of evaporation of sessile liquid droplets: Computer simulations. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 372, 127-134.	2.3	61
32	Spreading of non-Newtonian liquids over solid substrates. Journal of Colloid and Interface Science, 2003, 257, 284-290.	5.0	60
33	Kinetics of Wetting and Spreading of Droplets over Various Substrates. Langmuir, 2017, 33, 4367-4385.	1.6	55
34	Spreading of Aqueous Solutions of Trisiloxanes and Conventional Surfactants over PTFE AF Coated Silicone Wafers. Langmuir, 2009, 25, 3564-3570.	1.6	54
35	Modelling of dead-end microfiltration with pore blocking and cake formation. Journal of Membrane Science, 2002, 208, 181-192.	4.1	53
36	Computer Simulations of Evaporation of Pinned Sessile Droplets: Influence of Kinetic Effects. Langmuir, 2012, 28, 15203-15211.	1.6	52

#	Article	IF	CITATIONS
37	On the Spreading of an Insoluble Surfactant over a Thin Viscous Liquid Layer. Journal of Colloid and Interface Science, 1997, 190, 104-113.	5.0	48
38	Hydrodynamic permeability of membranes built up by particles covered by porous shells: Cell models. Advances in Colloid and Interface Science, 2008, 139, 83-96.	7.0	47
39	Viscosity of concentrated suspensions: influence of cluster formation. Advances in Colloid and Interface Science, 2002, 96, 279-293.	7.0	46
40	Thickness, stability and contact angle of liquid films on and inside nanofibres, nanotubes and nanochannels. Journal of Colloid and Interface Science, 2012, 384, 149-156.	5.0	46
41	Surfactant-enhanced spreading: Experimental achievements and possible mechanisms. Advances in Colloid and Interface Science, 2016, 233, 155-160.	7.0	46
42	Influence of Gel Layers on Electrokinetic Phenomena. Journal of Colloid and Interface Science, 1993, 158, 159-165.	5.0	44
43	Wetting dynamics of polyoxyethylene alkyl ethers and trisiloxanes in respect of polyoxyethylene chains and properties of substrates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 413, 307-313.	2.3	44
44	A model of the interaction between a charged particle and a pore in a charged membrane surface. Advances in Colloid and Interface Science, 1999, 81, 35-72.	7.0	43
45	Surface forces action in a vicinity of three phase contact line and other current problems in kinetics of wetting and spreading. Advances in Colloid and Interface Science, 2010, 161, 139-152.	7.0	42
46	Static contact angle hysteresis on smooth, homogeneous solid substrates. Colloid and Polymer Science, 2013, 291, 261-270.	1.0	42
47	Equilibrium Behavior and Dilational Rheology of Polyelectrolyte/Insoluble Surfactant Adsorption Films:Â Didodecyldimethylammonium Bromide and Sodium Poly(styrenesulfonate). Journal of Physical Chemistry B, 2005, 109, 18316-18323.	1.2	41
48	Influence of haematocrit level on the kinetics of blood spreading on thin porous medium during dried blood spot sampling. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 451, 38-47.	2.3	40
49	Foam in pharmaceutical and medical applications. Current Opinion in Colloid and Interface Science, 2019, 44, 153-167.	3.4	39
50	Influence of Gel Layers on Electrokinetic Phenomena. Journal of Colloid and Interface Science, 1993, 158, 166-170.	5.0	38
51	Spreading and evaporation of sessile droplets: Universal behaviour in the case of complete wetting. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 323, 63-72.	2.3	38
52	A new method of extraction of amoxicillin using mixed reverse micelles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 460, 137-144.	2.3	38
53	Reverse osmosis of multicomponent electrolyte solutions Part II. Experimental verification. Journal of Membrane Science, 1997, 128, 39-53.	4.1	35
54	Capillary imbibition of surfactant solutions in porous media and thin capillaries: partial wetting case. Journal of Colloid and Interface Science, 2004, 273, 589-595.	5.0	35

#	Article	IF	CITATIONS
55	Impact of surface forces on wetting of hierarchical surfaces and contact angle hysteresis. Colloid and Polymer Science, 2013, 291, 343-346.	1.0	34
56	Sieve mechanism of microfiltration. Journal of Membrane Science, 1994, 89, 199-213.	4.1	33
57	Hysteresis of Contact Angle of Sessile Droplets on Smooth Homogeneous Solid Substrates via Disjoining/Conjoining Pressure. Langmuir, 2015, 31, 5345-5352.	1.6	33
58	Spreading of surfactant solutions over thin aqueous layers at low concentrations: Influence of solubility. Journal of Colloid and Interface Science, 2009, 329, 361-365.	5.0	31
59	Equilibrium and dynamic surface properties of trisiloxane aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 365, 199-203.	2.3	30
60	Spreading of surfactant solutions over thin aqueous layers: Influence of solubility and micelles disintegration. Journal of Colloid and Interface Science, 2007, 314, 631-642.	5.0	29
61	Why do aqueous surfactant solutions spread over hydrophobic substrates?. Advances in Colloid and Interface Science, 2010, 161, 153-162.	7.0	29
62	Mixtures of catanionic surfactants can be superspreaders: Comparison with trisiloxane superspreader. Journal of Colloid and Interface Science, 2015, 459, 250-256.	5.0	29
63	Influence of the Disjoining Pressure on the Equilibrium Interfacial Profile in Transition Zone Between a Thin Film and a Capillary Meniscus. Colloids and Interface Science Communications, 2014, 1, 18-22.	2.0	28
64	Stability and deformation of oil droplets during microfiltration on a slotted pore membrane. Journal of Membrane Science, 2012, 401-402, 118-124.	4.1	27
65	Influence of the molecular architecture on the adsorption onto solid surfaces: comb-like polymers. Physical Chemistry Chemical Physics, 2011, 13, 16416.	1.3	26
66	Evaporation kinetics of sessile droplets of aqueous suspensions of inorganic nanoparticles. Journal of Colloid and Interface Science, 2013, 403, 49-57.	5.0	26
67	Spreading of blood drops over dry porous substrate: Complete wetting case. Journal of Colloid and Interface Science, 2015, 446, 218-225.	5.0	26
68	Interactions between nanoparticles in nanosuspension. Advances in Colloid and Interface Science, 2019, 272, 102020.	7.0	26
69	Viscosity of emulsions: influence of flocculation. Journal of Colloid and Interface Science, 2003, 258, 404-414.	5.0	25
70	Spontaneous emulsification of water in oil at appreciable interfacial tensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 521, 141-146.	2.3	24
71	Pervaporative extraction of volatile organic compounds from aqueous systems with use of a tubular transverse flow module Journal of Membrane Science, 1998, 143, 159-179.	4.1	23
72	Spontaneous rise of surfactant solutions into vertical hydrophobicÂcapillaries. Journal of Colloid and Interface Science, 2004, 270, 180-186.	5.0	23

#	Article	IF	CITATIONS
73	Microfiltration of deforming oil droplets on a slotted pore membrane and sustainable flux rates. Journal of Membrane Science, 2011, 382, 271-277.	4.1	23
74	Smart and green interfaces: From single bubbles/drops to industrial environmental and biomedical applications. Advances in Colloid and Interface Science, 2014, 209, 109-126.	7.0	23
75	Foam drainage placed on a porous substrate. Soft Matter, 2015, 11, 3643-3652.	1.2	23
76	Purification of produced water using oscillatory membrane filtration. Desalination, 2020, 491, 114428.	4.0	23
77	Shear enhanced microfiltration and rejection of crude oil drops through a slotted pore membrane including migration velocities. Journal of Membrane Science, 2012, 421-422, 69-74.	4.1	22
78	Bulk and surface rheology of Aculynâ,,¢ 22 and Aculynâ,,¢ 33 polymeric solutions and kinetics of foam drainage. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 434, 268-275.	2.3	22
79	Biological applications of kinetics of wetting and spreading. Advances in Colloid and Interface Science, 2017, 249, 17-36.	7.0	22
80	Spreading of aqueous SDS solutions over nitrocellulose membranes. Journal of Colloid and Interface Science, 2003, 264, 481-489.	5.0	20
81	Effects of additives on the foaming properties of Aculyn 22 and Aculyn 33 polymeric solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 460, 265-271.	2.3	19
82	Hysteresis of the Contact Angle of a Meniscus Inside a Capillary with Smooth, Homogeneous Solid Walls. Langmuir, 2016, 32, 5333-5340.	1.6	19
83	Foams built up by non-Newtonian polymeric solutions: Free drainage. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 521, 112-120.	2.3	19
84	Membrane oscillation and slot (pore) blocking in oil–water separation. Chemical Engineering Research and Design, 2019, 142, 111-120.	2.7	19
85	Membrane oscillation and oil drop rejection during produced water purification. Separation and Purification Technology, 2015, 144, 16-22.	3.9	17
86	Simultaneous spreading and imbibition of blood droplets over porous substrates in the case of partial wetting. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 505, 9-17.	2.3	17
87	Performance optimization of hollow fiber reverse osmosis membranes, part I. development of theory. Journal of Membrane Science, 1995, 103, 257-270.	4.1	16
88	Effective properties of suspensions/emulsions, porous and composite materials. Advances in Colloid and Interface Science, 2008, 137, 2-19.	7.0	16
89	Performance and properties of modified poly (vinylidene fluoride) membranes using general purpose polystyrene (GPPS) by DIPS method. Desalination, 2011, 283, 169-177.	4.0	16
90	Interaction of foam with a porous medium: Theory and calculations. European Physical Journal: Special Topics, 2015, 224, 459-471.	1.2	16

#	Article	IF	CITATIONS
91	Removal of micrometer size particles from surfaces using laser-induced thermocapillary flow: Experimental results. Journal of Colloid and Interface Science, 2016, 473, 120-125.	5.0	16
92	Flow of Multicomponent Electrolyte Solutions through Narrow Pores of Nanofiltration Membranes. Journal of Colloid and Interface Science, 2001, 240, 509-524.	5.0	15
93	Evaporation of pinned sessile microdroplets of water on a highly heat-conductive substrate: Computer simulations. European Physical Journal: Special Topics, 2013, 219, 143-154.	1.2	15
94	Viscosity of Milk: Influence of Cluster Formation. Colloid Journal, 2004, 66, 316-321.	0.5	13
95	Modeling the effect of surface forces on the equilibrium liquid profile of a capillary meniscus. Soft Matter, 2014, 10, 6024-6037.	1.2	13
96	Surfactant Enhanced Spreading: Catanionic Mixture. Colloids and Interface Science Communications, 2014, 1, 1-5.	2.0	13
97	Membrane emulsification: Formation of water in oil emulsions using a hydrophilic membrane. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 532, 297-304.	2.3	13
98	Nonflat equilibrium liquid shapes on flat surfaces. Journal of Colloid and Interface Science, 2004, 269, 432-441.	5.0	12
99	Passage and deformation of oil drops through non-converging and converging micro-sized slotted pore membranes. Separation and Purification Technology, 2013, 119, 7-13.	3.9	11
100	Prediction of size distribution of crude oil drops in the permeate using a slotted pore membrane. Chemical Engineering Research and Design, 2014, 92, 2775-2781.	2.7	11
101	Water in oil emulsions from hydrophobized metal membranes and characterization of dynamic interfacial tension in membrane emulsification. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 532, 77-86.	2.3	11
102	Foam drainage placed on a thin porous layer. Soft Matter, 2019, 15, 5331-5344.	1.2	11
103	Interaction of liquid foams with porous substrates. Current Opinion in Colloid and Interface Science, 2019, 39, 212-219.	3.4	11
104	Colloidal dynamics: Influence of diffusion, inertia and colloidal forces on cluster formation. Journal of Colloid and Interface Science, 2008, 325, 377-385.	5.0	10
105	Filtration of suspensions using slit pore membranes. Separation and Purification Technology, 2013, 103, 180-186.	3.9	10
106	Wetting properties of cosmetic polymeric solutions on hair tresses. Colloids and Interface Science Communications, 2015, 9, 12-15.	2.0	10
107	Spreading of a Lidocaine Formulation on Microneedle-Treated Skin. Journal of Pharmaceutical Sciences, 2015, 104, 4109-4116.	1.6	10
108	Kinetics of spreading of synergetic surfactant mixtures in the case of partial wetting. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 505, 23-28.	2.3	10

#	Article	IF	CITATIONS
109	Spreading and Imbibition of Vesicle Dispersion Droplets on Porous Substrates. Colloids and Interfaces, 2019, 3, 53.	0.9	10
110	Wetting and Spreading of Commercially Available Aqueous Surfactants on Porous Materials. Colloids and Interfaces, 2019, 3, 14.	0.9	10
111	Reversible adsorption inside pores of ultrafiltration membranes. Journal of Colloid and Interface Science, 2005, 288, 205-212.	5.0	9
112	Aggregation in colloidal suspensions and its influence on the suspension viscosity. Colloid Journal, 2010, 72, 379-388.	0.5	9
113	Effect of aggregation on viscosity of colloidal suslension. Colloid Journal, 2010, 72, 647-652.	0.5	9
114	Electroosmotic flow measurements in a freely suspended liquid film: Experimhents and numerical simulations. Electrophoresis, 2017, 38, 2554-2560.	1.3	9
115	Wetting of hydrophobic substrates by pure surfactants at continuously increasing humidity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 519, 71-77.	2.3	9
116	Drying of Foam under Microgravity Conditions. Microgravity Science and Technology, 2019, 31, 589-601.	0.7	9
117	Evaporation of Sessile Droplets of Polyelectrolyte/Surfactant Mixtures on Silicon Wafers. Colloids and Interfaces, 2021, 5, 12.	0.9	9
118	Performance optimization of hollow fiber reverse osmosis membranes. Part II. Comparative study of flow configurations. Journal of Membrane Science, 1996, 119, 117-128.	4.1	8
119	Disjoining Pressure of Thin Nonfreezing Interlayers. Journal of Colloid and Interface Science, 2002, 247, 80-83.	5.0	8
120	Reversible coagulation of colloidal suspension in shallow potential wells: Direct numerical simulation. Colloid Journal, 2009, 71, 503-513.	0.5	8
121	Kinetics of Spreading over Porous Substrates. Colloids and Interfaces, 2019, 3, 38.	0.9	8
122	A diffusion model of Donnan dialysis under flow conditions. Journal of Membrane Science, 1990, 53, 45-57.	4.1	7
123	Hydrodynamical interaction of two particles covered with a porous layer. International Journal of Multiphase Flow, 1992, 18, 739-750.	1.6	7
124	Removal of submicron particles from solid surfaces using surfactants. Colloids and Interface Science Communications, 2015, 6, 13-16.	2.0	7
125	Equilibrium of droplets on a deformable substrate: Influence of disjoining pressure. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 521, 3-12.	2.3	7
126	Kinetics of spreading wetting of blood over porous substrates. Current Opinion in Colloid and Interface Science, 2018, 36, 84-89.	3.4	7

#	Article	IF	CITATIONS
127	Modelling of foamed emulsion drainage. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 600, 124915.	2.3	7
128	Influence of surface forces on hydrodynamics of wetting. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1994, 91, 149-154.	2.3	6
129	Concentration polarization effect at the deposition of charged Langmuir monolayers. Advances in Colloid and Interface Science, 2011, 168, 114-123.	7.0	6
130	A comparative study between stirred dead end and circular flow in microfiltration of China clay suspensions. Water Science and Technology: Water Supply, 2016, 16, 481-492.	1.0	6
131	Hysteresis of Contact Angle of Sessile Droplets on Deformable Substrates: Influence of Disjoining Pressure. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 546, 129-135.	2.3	6
132	Equilibrium Droplets on Deformable Substrates: Equilibrium Conditions. Langmuir, 2018, 34, 5672-5677.	1.6	6
133	Sessile Droplets on Deformable Substrates. Colloids and Interfaces, 2018, 2, 56.	0.9	6
134	Electroosmotic Flow in Free Liquid Films: Understanding Flow in Foam Plateau Borders. Colloids and Interfaces, 2018, 2, 8.	0.9	6
135	Foamability of soft porous media using compression. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 579, 123569.	2.3	6
136	Electrokinetic Transport of a Charged Dye in a Freely Suspended Liquid Film: Experiments and Numerical Simulations. Langmuir, 2020, 36, 1183-1191.	1.6	6
137	Procedures used in electrokinetic investigations of surfactant-laden interfaces, liquid films and foam system. Current Opinion in Colloid and Interface Science, 2018, 37, 128-135.	3.4	5
138	Influence of Membrane Vibration on Particles Rejection Using a Slotted Pore Membrane Microfiltration. Membranes, 2021, 11, 709.	1.4	5
139	Foam Formation and Interaction with Porous Media. Coatings, 2020, 10, 143.	1.2	5
140	Foam flow through porous media. Current Opinion in Colloid and Interface Science, 2022, 58, 101555.	3.4	5
141	Evaporation of Sessile Water Droplets in Presence of Contact Angle Hysteresis. Mathematical Modelling of Natural Phenomena, 2012, 7, 82-98.	0.9	4
142	Stability of Two-Dimensional Liquid Foams under Externally Applied Electric Fields. Langmuir, 2022, 38, 6305-6321.	1.6	4
143	Concentration of Inorganic Salts in the Permeate during Nano- or Ultrafiltration Promoted by Water-Soluble Polyelectrolytes in the Feed Solution. Industrial & Engineering Chemistry Research, 2005, 44, 1358-1369.	1.8	3
144	Particulate clusters and permeability in porous media. Chemical Engineering Research and Design, 2012, 90, 1168-1176.	2.7	3

#	Article	IF	CITATIONS
145	Preface. Advances in Colloid and Interface Science, 2017, 249, 1.	7.0	3
146	Foam Formation by Compression/Decompression Cycle of Soft Porous Media. Colloids and Interfaces, 2020, 4, 31.	0.9	3
147	A model and mathematical representation for membrane concentration and purification of macromolecular solutions containing low molecular weight contaminants. Journal of Membrane Science, 1993, 79, 241-251.	4.1	2
148	Concentration of potassium cations in the permeate solution in the presence of N,N-dimethyl-N-2-propenyl-2-propen-1-aminium chloride homopolymer using dead-end nano-or ultrafiltration. Colloid Journal, 2006, 68, 211-216.	0.5	2
149	Foam Quality of Foams Formed on Capillaries and Porous Media Systems. Colloids and Interfaces, 2021, 5, 10.	0.9	2
150	Formation of Sodium Dodecyl Sulfate Foams by Compression of Soft Porous Material. Journal of Surfactants and Detergents, 2021, 24, 981-989.	1.0	2
151	Influence of Cluster Formation: Viscosity of Concentrated Emulsions. Applied Rheology, 2003, 13, 259-264.	3.5	1
152	Spreading dynamics: a succinct account of some basic questions. Microgravity Science and Technology, 2006, 18, 21-24.	0.7	1
153	Foreword. Advances in Colloid and Interface Science, 2008, 139, 1-2.	7.0	1
154	Influence of flow and charge transfer inside membranes on measurements of membrane zeta potential. Journal of Molecular Liquids, 2021, 323, 114865.	2.3	1
155	Deformation of fluid particles in the contact zone and line tension. Interface Science and Technology, 2004, 4, 183-214.	1.6	0
156	Special Issue on "Current development of wastewater treatment in India― Desalination, 2011, 282, 1.	4.0	0
157	Foreword. Advances in Colloid and Interface Science, 2011, 164, 1.	7.0	0
158	Honorary note. Advances in Colloid and Interface Science, 2014, 206, 1-4.	7.0	0
159	Honorary note: Clayton J. Radke. Advances in Colloid and Interface Science, 2016, 233, 1-3.	7.0	0
160	Special Issue in Honor of Shlomo Magdassi—Bringing Basic Colloid Science into Industrial Products. Colloids and Interfaces, 2021, 5, 32.	0.9	0
161	Crude Oil Drop Penetration into Permeates Using a Slotted Pore Membrane. ACS Omega, 2021, 6, 27763-27772.	1.6	0
162	Hysteresis of Contact Angles Based on Derjaguin's Pressure. , 2019, , 125-159.		0

Hysteresis of Contact Angles Based on Derjaguin's Pressure. , 2019, , 125-159. 162