Dana B Sulas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7571059/publications.pdf

Version: 2024-02-01

686830 752256 24 664 13 20 citations h-index g-index papers 26 26 26 1310 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The 2020 photovoltaic technologies roadmap. Journal Physics D: Applied Physics, 2020, 53, 493001.	1.3	274
2	Photoinduced charge transfer in transition metal dichalcogenide heterojunctions – towards next generation energy technologies. Energy and Environmental Science, 2020, 13, 2684-2740.	15.6	67
3	Toward All-Solid-State Lithium Batteries: Three-Dimensional Visualization of Lithium Migration in β-Li ₃ PS ₄ Ceramic Electrolyte. Journal of the Electrochemical Society, 2018, 165, A3732-A3737.	1.3	46
4	Open-Circuit Voltage Losses in Selenium-Substituted Organic Photovoltaic Devices from Increased Density of Charge-Transfer States. Chemistry of Materials, 2015, 27, 6583-6591.	3.2	42
5	Preferential Charge Generation at Aggregate Sites in Narrow Band Gap Infrared Photoresponsive Polymer Semiconductors. Advanced Optical Materials, 2018, 6, 1701138.	3.6	29
6	Modulation of hybrid organic–perovskite photovoltaic performance by controlling the excited dynamics of fullerenes. Materials Horizons, 2015, 2, 414-419.	6.4	24
7	Failure analysis of fieldâ€failed bypass diodes. Progress in Photovoltaics: Research and Applications, 2020, 28, 909-918.	4.4	18
8	Kinetic Competition between Charge Separation and Triplet Formation in Small-Molecule Photovoltaic Blends. Journal of Physical Chemistry C, 2017, 121, 26667-26676.	1.5	17
9	Microsecond charge separation at heterojunctions between transition metal dichalcogenide monolayers and single-walled carbon nanotubes. Materials Horizons, 2019, 6, 2103-2111.	6.4	17
10	Effect of nanotube coupling on exciton transport in polymer-free monochiral semiconducting carbon nanotube networks. Nanoscale, 2019, 11, 21196-21206.	2.8	17
11	A Comprehensive Methodology to Evaluate Losses and Process Variations in Silicon Solar Cell Manufacturing. IEEE Journal of Photovoltaics, 2019, 9, 1350-1359.	1.5	16
12	Comparison of photovoltaic module luminescence imaging techniques: Assessing the influence of lateral currents in high-efficiency device structures. Solar Energy Materials and Solar Cells, 2019, 192, 81-87.	3.0	16
13	Dark Lock-in Thermography Identifies Solder Bond Failure as the Root Cause of Series Resistance Increase in Fielded Solar Modules. IEEE Journal of Photovoltaics, 2020, 10, 1409-1416.	1.5	15
14	Direct Measurement of Acceptor Group Localization on Donor–Acceptor Polymers Using Resonant Auger Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 5570-5578.	1.5	13
15	Methods for <i>In Situ</i> i> Electroluminescence Imaging of Photovoltaic Modules Under Varying Environmental Conditions. IEEE Journal of Photovoltaics, 2020, 10, 1254-1261.	1.5	10
16	Thin-Film Module Reverse-Bias Breakdown Sites Identified by Thermal Imaging. , 2018, , .		9
17	Defect Detection in Solid-State Battery Electrolytes Using Lock-In Thermal Imaging. Journal of the Electrochemical Society, 2018, 165, A3205-A3211.	1.3	7
18	Laser Cutting and Micromachining for Localized and Targeted Solar Cell Characterization. , 2019, , .		7

#	Article	IF	CITATIONS
19	Largeâ€Area Material and Junction Damage in c–Si Solar Cells by Potentialâ€Induced Degradation. Solar Rrl, 2019, 3, 1800303.	3.1	7
20	GaAs Solar Cells Grown on Unpolished, Spalled Ge Substrates. , 2018, , .		4
21	Imaging Lateral Drift Kinetics to Understand Causes of Outdoor Degradation in Silicon Heterojunction Photovoltaic Modules. Solar Rrl, 2019, 3, 1900102.	3.1	4
22	Interplay between microstructure, defect states, and mobile charge generation in transition metal dichalcogenide heterojunctions. Nanoscale, 2021, 13, 8188-8198.	2.8	2
23	Comparison of PID Shunting in Polycrystalline and Single-Crystal Silicon Modules via Multi-Scale, Multi-Technique Characterization., 2019,,.		1
24	Unique Photophysical Properties of Infrared Absorbing Polymers. , 2019, , .		0