Venkata Subba Reddy B

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7570928/publications.pdf

Version: 2024-02-01

133 papers

2,578 citations

201674 27 h-index 276875 41 g-index

136 all docs

136 docs citations

136 times ranked 2788 citing authors

#	Article	IF	CITATIONS
1	Iodine-catalyzed condensation of isatin with indoles: A facile synthesis of di(indolyl)indolin-2-ones and evaluation of their cytotoxicity. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 2460-2463.	2.2	82
2	Recent progress in transition metal catalysed hydrofunctionalisation of less activated olefins. Journal of Organometallic Chemistry, $2011,696,16-36$.	1.8	77
3	Indium(III) chloride catalyzed three-component coupling reaction: A novel synthesis of 2-substituted aryl(indolyl)kojic acid derivatives as potent antifungal and antibacterial agents. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 7507-7511.	2.2	74
4	Cu(OTf) < sub > 2 < /sub > -Catalyzed Synthesis of 2,3-Disubstituted Indoles and 2,4,5-Trisubstituted Pyrroles from α-Diazoketones. Organic Letters, 2013, 15, 464-467.	4. 6	72
5	Tandem Prins/Friedel–Crafts Cyclization for Stereoselective Synthesis of Heterotricyclic Systems. Journal of Organic Chemistry, 2011, 76, 7677-7690.	3.2	69
6	The Azaâ€Prins Reaction in the Synthesis of Natural Products and Analogues. European Journal of Organic Chemistry, 2017, 2017, 1805-1819.	2.4	69
7	First example of quinine-squaramide catalyzed enantioselective addition of diphenyl phosphite to ketimines derived from isatins. Organic and Biomolecular Chemistry, 2014, 12, 1595.	2.8	68
8	Recent Advances in Intramolecular Metalâ€Free Oxidative C–H Bond Aminations Using Hypervalent Iodine(III) Reagents. European Journal of Organic Chemistry, 2019, 2019, 1687-1714.	2.4	67
9	A domino Knoevenagel hetero-Diels–Alder reaction for the synthesis of polycyclic chromene derivatives and evaluation of their cytotoxicity. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 1995-1999.	2.2	59
10	Substrate Directed C–H Activation for the Synthesis of Benzo[<i>c</i>]cinnolines through a Sequential C–C and C–N Bond Formation. Organic Letters, 2015, 17, 3730-3733.	4.6	56
11	Quinazolinone-Directed C-H Activation: A Novel Strategy for the Acetoxylation-Methoxylation of the Arenes. Synlett, 2012, 23, 1364-1370.	1.8	52
12	Green Catalytic Process for Click Synthesis Promoted by Copper Oxide Nanocomposite Supported on Graphene Oxide. Advanced Synthesis and Catalysis, 2016, 358, 1088-1092.	4.3	49
13	Stereoselective Synthesis of <i>anti</i> -1,3-Aminoalcohols <i>via</i> Reductive Opening of 4-Amidotetrahydropyrans Derived from the Prins/Ritter Sequence. Organic Letters, 2013, 15, 546-549.	4.6	46
14	Stereoselective Synthesis of Spiro[tetrahydropyran-3,3′-oxindole] Derivatives Employing Prins Cascade Strategy. Organic Letters, 2014, 16, 6267-6269.	4.6	45
15	Supramolecular catalysis by \hat{l}^2 -cyclodextrin for the synthesis of kojic acid derivatives in water. New Journal of Chemistry, 2016, 40, 1693-1697.	2.8	41
16	Recent Advances in Prins Spirocyclization. European Journal of Organic Chemistry, 2017, 2017, 5484-5496.	2.4	41
17	Tandem Prins cyclizations for the construction of oxygen containing heterocycles. Organic and Biomolecular Chemistry, 2020, 18, 7514-7532.	2.8	41
18	Gold-Catalyzed Domino Cycloisomerization/Pictet–Spengler Reaction of 2-(4-Aminobut-1-yn-1-yl)anilines with Aldehydes: Synthesis of Tetrahydropyrido[4,3- <i>b</i>) indole Scaffolds. Journal of Organic Chemistry, 2012, 77, 11355-11361.	3.2	39

#	Article	IF	Citations
19	Oxidative Prins and Prins/Friedel–Crafts cyclizations for the stereoselective synthesis of dioxabicycles and hexahydro-1H-benzo[f]isochromenes via the benzylic C–H activation. Organic and Biomolecular Chemistry, 2012, 10, 1349-1358.	2.8	38
20	Sequential aza-Piancatelli rearrangement/Friedel–Crafts alkylation for the synthesis of pyrrolo[1,2-d]benzodiazepine derivatives. Organic and Biomolecular Chemistry, 2016, 14, 1111-1116.	2.8	36
21	Organocatalytic Enantioselective Amination of 2-Substituted Indolin-3-ones: A Strategy for the Synthesis of Chiral \hat{l}_{\pm} -Hydrazino Esters. Organic Letters, 2017, 19, 170-173.	4.6	35
22	Synthesis and biological evaluation of phaitanthrin congeners as anti-mycobacterial agents. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3867-3872.	2.2	33
23	Asymmetric Henry reaction catalyzed by a chiral $Cu(II)$ complex: a facile enantioselective synthesis of (S)-2-nitro-1-arylethanols. Tetrahedron: Asymmetry, 2011, 22, 530-535.	1.8	32
24	In(OTf)3-catalyzed tandem aza-Piancatelli rearrangement/Michael reaction for the synthesis of 3,4-dihydro-2H-benzo[b][1,4]thiazine and oxazine derivatives. RSC Advances, 2012, 2, 10661.	3.6	32
25	Microwave-assisted, ruthenium-catalyzed intramolecular amide-alkyne annulation for the rapid synthesis of fused tricyclic isoquinolinones. RSC Advances, 2015, 5, 68510-68514.	3.6	30
26	Metal-free oxidative acylation/cyclization of <i>N</i> -methacryloyl-2-phenylbenzoimidazole with aryl aldehydes: an easy access to benzimidazo[2,1- <i>a</i>]isoquinolin-6(5 <i>H</i>)-ones. Organic and Biomolecular Chemistry, 2019, 17, 9627-9630.	2.8	30
27	The stereoselective synthesis of cis-/trans-fused hexahydropyrano[4,3-b]chromenes via Prins cyclization trapping by a tethered nucleophile. Organic and Biomolecular Chemistry, 2012, 10, 6562.	2.8	29
28	Stereoselective Synthesis of Hexahydro-1 <i>H</i> -spiro[isoquinoline-4,4′-pyran] Scaffolds through an Intramolecular Prins Cascade Process. Journal of Organic Chemistry, 2015, 80, 653-660.	3.2	29
29	Rh(III)-Catalyzed Tandem Bicyclization of 2-Arylimidazo $[1,2-\langle i\rangle a\langle i\rangle]$ pyridines with Cyclic Enones for the Construction of Bridged Scaffolds. Organic Letters, 2019, 21, 8548-8552.	4.6	29
30	Prins Cascade Cyclization for the Synthesis of 1,9-Dioxa-4-azaspiro [5.5] undecane Derivatives. Journal of Organic Chemistry, 2014, 79, 2289-2295.	3.2	28
31	Thia-Prins Bicyclization Approach for the Stereoselective Synthesis of Dithia- and Azathia-Bicycles. Journal of Organic Chemistry, 2013, 78, 6303-6308.	3.2	27
32	Goldâ€Catalyzed 5â€ <i>endo</i> â€ <i>dig</i> Cyclization of 2â€[(2â€Aminophenyl)ethynyl]phenylamine with Ketones for the Synthesis of Spiroindolone and Indolo[3,2â€ <i>c</i>]quinolone Scaffolds. European Journal of Organic Chemistry, 2014, 2014, 3313-3318.	2.4	27
33	Tandem Prins and Friedel–Crafts Cyclizations for the StereoÂselective Synthesis of trans-Fused Hexahydro-1H-benzo[g]isochromene Derivatives. Synthesis, 2015, 47, 1117-1122.	2.3	27
34	Stereoselective Synthesis of Hexahydro-1 <i>H</i> -pyrano- and thiopyrano[3,4- <i>c</i>]quinoline Derivatives through a Prins Cascade Cyclization. Journal of Organic Chemistry, 2013, 78, 8161-8168.	3.2	26
35	Intramolecular C–O/C–S bond insertion of α-diazoesters for the synthesis of 2-aryl-4H-benzo[d][1,3]oxazine and 2-aryl-4H-benzo[d][1,3]thiazine derivatives. RSC Advances, 2014, 4, 44629-44633.	3.6	26
36	Tuning the Reactivity of Oxygen/Sulfur by Acidity of the Catalyst in Prins Cyclization: Oxa-versus Thia-Selectivity. Journal of Organic Chemistry, 2014, 79, 2716-2722.	3.2	26

#	Article	IF	CITATIONS
37	Cooperative Multicatalytic System for the One-Pot Synthesis of Octahydrospiro-β-carbolines. Journal of Organic Chemistry, 2015, 80, 8807-8814.	3.2	26
38	Arylative Cyclization of Indoleâ€1â€carboxamides with 1,6â€Enynes for the Synthesis of Polycyclic Indole Scaffolds. European Journal of Organic Chemistry, 2017, 2017, 5763-5768.	2.4	26
39	Thee-component, one-pot synthesis of hexahydroazepino[3,4- b] indole and tetrahydro-1 H-pyrido[3,4- b] indole derivatives and evaluation of their cytotoxicity. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4501-4503.	2.2	24
40	lodine-catalyzed conjugate addition of indoles onto en-1,4-dione: A novel synthesis of 3-(1-(1H-indol-3-yl)-2-oxo-2-phenylethyl)indolin-2-ones as antibacterial and antifungal agents. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 6510-6514.	2.2	22
41	Domino Oxidative Cyclization of 2â€AminoÂacetophenones for the Oneâ€Pot Synthesis of Tryptanthrin Derivatives. European Journal of Organic Chemistry, 2015, 2015, 8018-8022.	2.4	22
42	Novel SAHA analogues inhibit HDACs, induce apoptosis and modulate the expression of microRNAs in hepatocellular carcinoma. Apoptosis: an International Journal on Programmed Cell Death, 2016, 21, 1249-1264.	4.9	21
43	Enantioselective Michael addition of 2-hydroxy-1,4-naphthoquinone and 1,3-dicarbonyls to \hat{l}^2 -nitroalkenes catalyzed by a novel bifunctional rosin-indane amine thiourea catalyst. RSC Advances, 2013, 3, 8756.	3.6	20
44	Pd ^{II} â€Catalyzed Spiroannulation of Cyclic <i>N</i> â€Sulfonyl Ketimines with Aryl Iodides through Câ€"H Bond Activation. European Journal of Organic Chemistry, 2017, 2017, 4085-4090.	2.4	20
45	Na 2 S 2 O 8 â€Promoted Radical Cyclization for the Synthesis of Azaspiro[4.5]decaâ€3,6,9â€trieneâ€2,8â€dione and Pyrrolo[2,1―j]quinolone Derivatives. European Journal of Organic Chemistry, 2017, 2017, 2332-2337.	2.4	19
46	Four-Component, One-Pot Synthesis of N-Alkyl-4-oxo-3-phenylhexahydro-4H-spiro $\{[1,3]$ dioxolo $[4\hat{a}\in^2,5\hat{a}\in^2:4,5]$ furo $[2,3-f][1,2,3]$ triazolo $[1,5-a][1,4]$ diazep Derivatives. Synthesis, 2014, 46, 3408-3414.	o ine -9,1â€	≟2 18 yclohexaı
47	Stereoselective Synthesis of Highly Functionalized Dispirooxindoles through [3+2] Cycloaddition of Carbonyl Ylides with 3â€Arylideneoxindoles. European Journal of Organic Chemistry, 2015, 2015, 2038-2041.	2.4	18
48	Domino Prins/pinacol reaction for the stereoselective synthesis of spiro[pyran-4,4′-quinoline]-2′,3′-dione derivatives. Organic and Biomolecular Chemistry, 2015, 13, 8729-8733.	2.8	18
49	Oxidative Asymmetric Azaâ€Friedel–Crafts Alkylation of Indoles with 3â€Indolinoneâ€2â€carboxylates Catalyzed by a BINOL Phosphoric Acid and Promoted by DDQ. Chemistry - an Asian Journal, 2018, 13, 1327-1334.	3.3	18
50	Asymmetric Robinson Annulation of 3-Indolinone-2-carboxylates with Cyclohexenone: Access to Chiral Bridged Tricyclic Hydrocarbazoles. Organic Letters, 2018, 20, 4195-4199.	4.6	18
51	Ru(II)â€Catalyzed Hydroarylation of Maleimides with Cyclic N â€SulfonylKetimines through ortho â€Câ€H Bond Activation. ChemistrySelect, 2018, 3, 5062-5065.	1.5	18
52	BF3·OEt2-catalyzed tandem Prins Friedel–Crafts reaction: a novel synthesis of sugar fused diarylhexahydro-2H-furo[3,2-b]pyrans. Tetrahedron Letters, 2011, 52, 2961-2964.	1.4	17
53	The Prins Cascade Cyclization Reaction for the Synthesis of Angularlyâ€Fused Tetrahydropyran and Piperidine Derivatives. European Journal of Organic Chemistry, 2013, 2013, 1993-1999.	2.4	17
54	Enantioselective 1,4-addition of kojic acid derivatives to \hat{l}^2 -nitroolefins catalyzed by a cinchonine derived sugar thiourea. RSC Advances, 2014, 4, 9107.	3.6	17

#	Article	IF	Citations
55	Design, synthesis and anti-mycobacterial activity of 1,2,3,5-tetrasubstituted pyrrolyl-N-acetic acid derivatives. European Journal of Medicinal Chemistry, 2014, 84, 118-126.	5.5	17
56	Asymmetric Synthesis of Tetrahydro-β-carboline Alkaloids EmployingÂ-Ellman's Chiral Auxiliary. Synthesis, 2016, 48, 1079-1086.	2.3	17
57	1,3-Dipolar cycloaddition of sugar azides with benzyne: a novel synthesis of 1,2,3-benzotriazolyl glycoconjugates. Carbohydrate Research, 2011, 346, 995-998.	2.3	16
58	Sugar thiourea catalyzed highly enantioselective Michael addition of 2-hydroxy-1,4-naphthoquinone to l^2 -nitroalkenes. RSC Advances, 2013, 3, 930-936.	3.6	16
59	⟨i⟩o⟨ i⟩-Benzenedisulfonimide as a Recyclable Homogeneous Organocatalyst for an Efficient and Facile Synthesis of 4-Amidotetrahydropyran Derivatives Through Prinsâ€"Ritter Reaction. Synthetic Communications, 2014, 44, 2545-2554.	2.1	16
60	Tandem Prins/pinacol reaction for the synthesis of oxaspiro[4.5]decan-1-one scaffolds. Organic and Biomolecular Chemistry, 2014, 12, 7257.	2.8	16
61	BINOL Phosphoric Acidâ€Catalyzed Asymmetric Mannich Reaction of Cyclic <i>N</i> â€Acyl Ketimines with Cyclic Enones. Chemistry - an Asian Journal, 2019, 14, 2958-2965.	3.3	16
62	Palladium(II)-Catalyzed Auxiliary-Directed C-H Activation for the Regioselective ortho Arylation of N-(2-Benzoylphenyl)benzamides. Synlett, 2011, 2011, 2374-2378.	1.8	15
63	Highly Diastereoselective Reaction of αâ€Diazoesters with Aryl Alcohols and Isatin Imines: Rapid Access to Oxindoleâ€Derived αâ€Alkoxyâ€Î²â€amino Acid Derivatives with Two Adjacent Quaternary Carbon Centers. European Journal of Organic Chemistry, 2014, 2014, 2221-2224.	2.4	15
64	A Formal Synthesis of Herboxidiene/GEX1A. European Journal of Organic Chemistry, 2014, 2014, 4389-4397.	2.4	15
65	Prins Spirocyclization for the Synthesis of Spiro[isobenzofuranâ€pyran] Derivatives. European Journal of Organic Chemistry, 2014, 2014, 4234-4238.	2.4	14
66	Tandem Prins Strategy for the Synthesis of Spiropyrrolidine and Spiropiperidine Derivatives. European Journal of Organic Chemistry, 2015, 2015, 3076-3085.	2.4	14
67	Stereoselective Synthesis of the C(1)Â-ÂC(28) Fragment of Amphidinol 3. Helvetica Chimica Acta, 2016, 99, 436-446.	1.6	14
68	Tandem Prins Cyclization for the Stereoselective Synthesis of the 4,5â€Diarylâ€hexahydropyrano[3,4â€ <i>>c</i>)chromene Skeleton of Calyxins I and J. European Journal of Organic Chemistry, 2015, 2015, 3103-3108.	2.4	13
69	Stereoselective Synthesis of 2-(2-Hydroxyalkyl)piperidine Alkaloids Through Prins–Ritter Reaction. Synthetic Communications, 2014, 44, 1658-1663.	2.1	12
70	1,5-Electrocyclization of conjugated azomethine ylides derived from 3-formyl chromene and N-alkyl amino acids/esters. Organic and Biomolecular Chemistry, 2017, 15, 7580-7583.	2.8	12
71	Ru(<scp>ii</scp>)-Catalyzed spirocyclization of aryl <i>N</i> -sulfonyl ketimines with aryl isocyanates through an aromatic C–H bond activation. Organic and Biomolecular Chemistry, 2018, 16, 2522-2526.	2.8	12
72	Silver(i)-catalyzed sequential hydroamination and Prins type cyclization for the synthesis of fused benzo-l´-sultams. Organic and Biomolecular Chemistry, 2018, 16, 5163-5166.	2.8	12

#	Article	IF	CITATIONS
73	Asymmetric Michael/hemiketalization of 5-hydroxy-2-methyl-4H-pyran-4-one to β,γ-unsaturated α-ketoesters catalyzed by a bifunctional rosin–indane amine thiourea catalyst. RSC Advances, 2014, 4, 42299-42307.	3.6	11
74	Acetal-initiated Prins bicyclization for the synthesis of hexahydrofuro-[3,4-c]furan lignans and octahydropyrano[3,4-c]pyran derivatives. Organic and Biomolecular Chemistry, 2014, 12, 4754-4762.	2.8	11
75	Organocatalytic Enantioselective Mannich Reaction: Direct Access to Chiral β-Amino Esters. ACS Omega, 2019, 4, 2168-2177.	3.5	11
76	Oxidative Annulation of 3â€Arylâ€2 <i>H</i> â€benzo[e][1,2,4]thiadiazineâ€1,1â€dioxides with Aryl Aldehydes: An Easy Access to Hydroxyisoindolo[1,2â€ <i>b</i>) benzothiadiazinedioxide Scaffolds. European Journal of Organic Chemistry, 2020, 2020, 923-931.	1 2.4	11
77	A short and highly convergent approach for the synthesis of rutaecarpine derivatives. RSC Advances, 2015, 5, 27476-27480.	3.6	10
78	An efficient lactamisation/N-acyliminium Pictet–Spengler domino strategy for the diasteroselective synthesis of polyhydroxylated quinoxalinone, β-carboline and quinazolinone derivatives. Organic and Biomolecular Chemistry, 2016, 14, 4276-4282.	2.8	10
79	Rhodium-catalyzed cycloaddition of carbonyl ylides for the synthesis of spiro[furo[2,3-a]xanthene-2,3 $\hat{a}\in^2$ -indolin]-2 $\hat{a}\in^2$ -one scaffolds. RSC Advances, 2016, 6, 50497-50499.	3.6	10
80	Substitution dependent stereoselective construction of bicyclic lactones and its application to the total synthesis of pyranopyran, tetraketide and polyrhacitide A. Organic and Biomolecular Chemistry, 2016, 14, 8832-8837.	2.8	10
81	Tandem Prins-type cyclization for the stereoselective construction of fused polycyclic ring systems. Organic Chemistry Frontiers, 2018, 5, 1320-1324.	4.5	10
82	Organocatalytic Enantioselective Michael Addition of 3â€Indolinoneâ€2â€Carboxylates to Maleimides. European Journal of Organic Chemistry, 2018, 2018, 1364-1371.	2.4	10
83	Stereoselective Construction of Spiroâ€Indolenine Frameworks through a Prins/Friedel–Crafts Cyclization Cascade Reaction. European Journal of Organic Chemistry, 2018, 2018, 1693-1698.	2.4	10
84	Enantioselective Mukaiyama–Michael Reaction of Silyl Enol Ethers to 2â€Enoylpyridine <i>N</i> â€Oxides Catalyzed by Copper―Bis(oxazoline) Complex. Advanced Synthesis and Catalysis, 2013, 355, 383-388.	4.3	9
85	A novel domino cyclization for the stereoselective synthesis of indeno[2,1-c]pyran and cyclopenta[c]pyran derivatives. Organic and Biomolecular Chemistry, 2015, 13, 4733-4736.	2.8	9
86	Tandem Prins/Wagner/Ritter process for the stereoselective synthesis of (3-oxabicyclo[4.2.0]octanyl)amide and (1-(5-aryltetrahydrofuran-3-yl)cyclobutyl)amide derivatives. Organic and Biomolecular Chemistry, 2015, 13, 5532-5536.	2.8	9
87	Stereoselective synthesis of octahydrocyclohepta[c]pyran-6(1H)-one scaffolds through a Prins/alkynylation/hydration sequence. Organic and Biomolecular Chemistry, 2015, 13, 10212-10215.	2.8	9
88	A tandem Prins spirocyclization for the stereoselective synthesis of tetrahydrospiro[chroman-2,4′-pyran] derivatives. Organic and Biomolecular Chemistry, 2016, 14, 3234-3237.	2.8	9
89	Modulating Prins Cyclization <i>versus</i> Tandem Prins Processes for the Synthesis of Hexahydroâ€1 <i>H</i> â€pyrano[3,4â€xi>c]chromenes. European Journal of Organic Chemistry, 2021, 2021, 138-145.	2.4	9
90	Studies Directed Towards the Synthesis of Bryostatin: A Stereoselective Synthesis of the C7–C16 Fragment. Synthesis, 2012, 44, 3077-3084.	2.3	8

#	Article	IF	Citations
91	1,4â€Dipolar Cycloaddition Reactions in Ionic Liquids: A Facile Synthesis of 9a <i>H</i> ,15 <i>H</i> ,ê{1]Benzopyrano[3′,2′: 3,4]pyrido[2,1â€ <i>a</i>]isoquinolines (=9a <i>H</i> ,15 <i>H</i> ,6488enzo[<i>a</i>][1]benzopyrano[2,3â€ <i>h</i>]quinolizines). Helvetica Chimica Acta, 2012, 95, 76-86.	1.6	8
92	A Convergent and Stereoselective Total Synthesis of Phomolides G and H. Synlett, 2014, 25, 501-504.	1.8	8
93	Stereoselective Total Syntheses of Solifenacin and N-Acetyl-1-(4-chloroAphenyl)-6,7-dimethoxytetrahydroisoquinoline. Synthesis, 2014, 46, 2794-2798.	2.3	8
94	InCl3-catalyzed Prins bicyclization for the synthesis of spirotetrahydropyran derivatives. RSC Advances, 2014, 4, 16739.	3.6	8
95	A novel Prins cascade process for the stereoselective synthesis of oxa-bicycles. Organic and Biomolecular Chemistry, 2015, 13, 2669-2672.	2.8	8
96	Synthesis of 1,2,3-triazole and isoxazole-linked pyrazole hybrids and their cytotoxic activity. Medicinal Chemistry Research, 2017, 26, 1753-1763.	2.4	8
97	Rhodium(III) atalyzed Dehydrogenative Annulation of 2â€Arylindazoles with Cyclic Enones. European Journal of Organic Chemistry, 2021, 2021, 3083-3090.	2.4	8
98	Iron(III)-catalyzed Highly Efficient, One-pot Synthesis of Triazolo[1,2- <i>a</i>]indazoletriones and Spirotriazolo[1,2- <i>a</i>]indazoletetraones. Chemistry Letters, 2013, 42, 927-929.	1.3	7
99	Prinsâ€Driven Friedel–Crafts Reaction for the Stereoselective Synthesis of Hexahydroindeno[2,1â€ <i>c</i>)]pyran Derivatives. Asian Journal of Organic Chemistry, 2015, 4, 1266-1272.	2.7	7
100	Copper Salt of 12‶ungstophosphoric Acid: An Efficient and Reusable Heteropoly Acid for the Click Chemistry. Chinese Journal of Chemistry, 2013, 31, 534-538.	4.9	6
101	GaCl3-catalyzed activation of alkynyl glycosides for the synthesis of O-glycosides. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2014, 145, 517-520.	1.8	6
102	Sequential hydroarylation/Prins cyclization: an efficient strategy for the synthesis of angularly fused tetrahydro-2H-pyrano[3,4-c]quinolines. RSC Advances, 2016, 6, 113390-113394.	3.6	6
103	Stereoselective Synthesis of (+)â€Petromyroxol. Helvetica Chimica Acta, 2016, 99, 636-641.	1.6	6
104	Ru(II)-Catalyzed Oxidative Functionalization of Arylhydrazine-1,2-dicarboxylates with Internal Alkynes for the Synthesis of Enecarbamates. ACS Omega, 2018, 3, 9746-9753.	3.5	6
105	Cellulose–Sulfonic Acid: An Efficient, Recyclable, and Biodegradable Solid Acid Catalyst for the Synthesis of 3-Aminoalkylindoles. Chemistry Letters, 2013, 42, 972-974.	1.3	5
106	An iodine catalyzed metal free domino process for the stereoselective synthesis of oxygen bridged bicyclic ethers. Organic and Biomolecular Chemistry, 2015, 13, 6737-6741.	2.8	5
107	Domino Strategy for the Stereoselective Construction of Angularly Fused Tricyclic Ethers. Journal of Organic Chemistry, 2015, 80, 12580-12587.	3.2	5
108	Design and synthesis of novel triazole linked pyrrole derivatives as potent Mycobacterium tuberculosis inhibitors. Medicinal Chemistry Research, 2017, 26, 2985-2999.	2.4	5

#	Article	IF	Citations
109	Construction of Oxaâ€Bridged Tetracyclic Frameworks through a Prins Bicyclic Annulation. European Journal of Organic Chemistry, 2019, 2019, 3567-3574.	2.4	5
110	Tandem Prins cyclization for the synthesis of indole fused spiro-1,4-diazocane scaffolds. Organic and Biomolecular Chemistry, 2020, 18, 6710-6715.	2.8	5
111	Stereoselective Total Synthesis of Mangiferaelactone using <scp>D</scp> â€Mannose as a Chiral Pool. Helvetica Chimica Acta, 2015, 98, 1395-1402.	1.6	4
112	Biocatalytic Approach for the Total Synthesis of (–)â€Malyngolide and Its C(5)â€Epimer. Helvetica Chimica Acta, 2016, 99, 267-272.	1.6	4
113	Sequential oxonium–olefin–alkyne cyclization for the stereoselective synthesis of (octahydro-1H-pyrano[3,4-c]pyridin-5-yl)methanone derivatives. Organic and Biomolecular Chemistry, 2016, 14, 11396-11401.	2.8	4
114	Pd(II)/PhI(OAc)2 promoted direct cross coupling of glucals with aromatic acids. Carbohydrate Research, 2018, 461, 1-3.	2.3	4
115	Synthesis and biological evaluation of 1-amino isochromans from 2-bromoethyl benzaldehyde and amines in acid medium. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 196-201.	2.2	4
116	Oxidative sp ³ Câ€"H Functionalization of Methyl Substituted Azaâ€Aromatics: An Easy Access to <i>N</i> à€Fused Polyheterocycles. European Journal of Organic Chemistry, 2019, 2019, 6800-6806.	2.4	4
117	Enantioselective fluorination of 3-indolinone-2-carboxylates with NFSI catalyzed by chiral bisoxazolines. Organic and Biomolecular Chemistry, 2021, 19, 6085-6091.	2.8	4
118	Rh(III)â€Catalyzed Oxidative Annulation of 2â€Arylindazoles with βâ€Ketosulfoxonium Ylides. ChemistrySelect, 2021, 6, 13046-13050.	1.5	4
119	Synthetic Applications of Prins Cyclization in Natural Product Syntheses. Chemical Record, 2022, 22, e202200044.	5.8	4
120	A Novel Prins Bicyclization Strategy for the Synthesis of Sugar Annulated Furopyran Scaffolds. Synlett, 2013, 24, 1263-1268.	1.8	3
121	Sequential Prins/Pinacol Strategy for the Stereoselective Synthesis of Spiroâ€Ĵ²â€tetralones. Asian Journal of Organic Chemistry, 2016, 5, 411-416.	2.7	3
122	Synthetic approaches to FDA approved drugs for asthma and COPD from 1969 to 2020. Bioorganic and Medicinal Chemistry, 2021, 41, 116212.	3.0	3
123	Stereoselective Synthesis of Dipeptidyl Peptidaseâ€4 (DPPâ€4) Inhibitor, (<i>R</i>)â€6itagliptin. ChemistrySelect, 2016, 1, 5445-5447.	1.5	2
124	Tandem Prins Spirocyclization for the Synthesis of 1,8â€Dioxaspiro[4.5]decane and 1,9â€Dioxaspiro[5.5]undecane Scaffolds. ChemistrySelect, 2017, 2, 10908-10911.	1.5	2
125	Decarboxylative Coupling of Cyclic αâ€Amino Acid with Aldehyde and Kojic Acid: Direct Access to 2â€Pyrrolidinyl and 2â€Piperidinyl Kojic Acid Derivatives. ChemistrySelect, 2018, 3, 13110-13112.	1.5	2
126	Toward the synthesis of macrolide aspergillide D. Synthetic Communications, 2019, 49, 3191-3197.	2.1	2

#	Article	IF	CITATIONS
127	Substrateâ€Controlled Azaâ€Ene/Prins Cyclization for the Synthesis of Dihydroquinoline and Oxocene Derivatives. ChemistrySelect, 2019, 4, 3620-3623.	1.5	2
128	Microwave accelerated azomethine ylide cycloaddition with Baylis–Hillman adducts. Synthetic Communications, 2020, 50, 973-979.	2.1	2
129	Rh(III)-catalyzed ortho-C–H bond functionalization of 2-arylquinoxalines with vinyl arenes. Tetrahedron Letters, 2021, , 153501.	1.4	2
130	A short and facile stereoselective total synthesis of cryptocarya diacetate. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2013, 144, 1583-1587.	1.8	1
131	A Highly Stereoselective Formal Synthesis of Hapalosin. Synlett, 2013, 24, 1415-1419.	1.8	1
132	TMSOTfâ€Promoted Synthesis of 4â€(2â€Aryl or 2â€Alkylâ€3,6â€dihydroâ€2 H â€pyranâ€4â€yl)â€1,2,3,6â€tet Derivatives. ChemistrySelect, 2019, 4, 3366-3368.	rahydropy Y.5	ridine
133	A Unified Total Synthesis of Isocyclocapitelline and Cyclocapitelline. Natural Product Communications, 2020, 15, 1934578X2096787.	0.5	0