William A Arnold

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7570912/william-a-arnold-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

160 8,266 88 47 h-index g-index citations papers 6.37 9,257 177 7.4 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
160	Seeking Balance. Environmental Engineering Science, 2022 , 39, 195-196	2	
159	Identifying the spatiotemporal vulnerability of soils to antimicrobial contamination through land application of animal manure in Minnesota, United States <i>Science of the Total Environment</i> , 2022 , 832, 155050	10.2	2
158	Encapsulation technology for decentralized brewery wastewater treatment: A small pilot experiment. <i>Bioresource Technology</i> , 2021 , 126435	11	O
157	Exploring the Utility of Compound-Specific Isotope Analysis for Assessing Ferrous Iron-Mediated Reduction of RDX in the Subsurface. <i>Environmental Science & Environmental Sci</i>	10.3	2
156	Kinetics and Pathways of the Aqueous Photolysis of Pharmaceutical Pollutants: A Versatile Laboratory or Remote Learning Investigation. <i>Journal of Chemical Education</i> , 2021 , 98, 2411-2418	2.4	O
155	Encapsulation technology to improve biological resource recovery: recent advancements and research opportunities. <i>Environmental Science: Water Research and Technology</i> , 2021 , 7, 16-23	4.2	4
154	Photolysis of atrazine: Role of triplet dissolved organic matter and limitations of sensitizers and quenchers. <i>Water Research</i> , 2021 , 190, 116659	12.5	8
153	Neonicotinoid Insecticides in Surface Water, Groundwater, and Wastewater Across Land-Use Gradients and Potential Effects. <i>Environmental Toxicology and Chemistry</i> , 2021 , 40, 1017-1033	3.8	9
152	Ice Cover Influences Redox Dynamics in Prairie Pothole Wetland Sediments. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2021 , 126, e2021JG006318	3.7	O
151	Quantifying and predicting antimicrobials and antimicrobial resistance genes in waterbodies through a holistic approach: a study in Minnesota, United States. <i>Scientific Reports</i> , 2021 , 11, 18747	4.9	1
150	Prediction of Photochemically Produced Reactive Intermediates in Surface Waters via Satellite Remote Sensing. <i>Environmental Science & Environmental &</i>	10.3	18
149	In Situ Sequestration of Perfluoroalkyl Substances Using Polymer-Stabilized Powdered Activated Carbon. <i>Environmental Science & Environmental Science </i>	10.3	10
148	Increased Use of Quaternary Ammonium Compounds during the SARS-CoV-2 Pandemic and Beyond: Consideration of Environmental Implications. <i>Environmental Science and Technology Letters</i> , 2020, 7, 622-631	11	93
147	Comprehensive screening of quaternary ammonium surfactants and ionic liquids in wastewater effluents and lake sediments. <i>Environmental Sciences: Processes and Impacts</i> , 2020 , 22, 430-441	4.3	16
146	Determination of Hydroxyl Radical Production from Sulfide Oxidation Relevant to Sulfidic Porewaters. <i>ACS Earth and Space Chemistry</i> , 2020 , 4, 261-271	3.2	2
145	Effects of encapsulation on the chemical inhibition of anaerobic hydrogen- and methane-producing microbial cells. <i>Bioresource Technology Reports</i> , 2020 , 11, 100451	4.1	5
144	Metabolite composition of sinking particles differs from surface suspended particles across a latitudinal transect in the South Atlantic. <i>Limnology and Oceanography</i> , 2020 , 65, 111-127	4.8	17

143	Characterization of Antibiotic Resistance and Metal Homeostasis Genes in Midwest USA Agricultural Sediments. <i>Water (Switzerland)</i> , 2020 , 12, 2476	3	0	
142	Assessment of 2,4-Dinitroanisole Transformation Using Compound-Specific Isotope Analysis after Chemical Reduction of Iron Oxides. <i>Environmental Science & Environmental Scien</i>	10.3	8	
141	Photochemical fate of quaternary ammonium compounds in river water. <i>Environmental Sciences: Processes and Impacts</i> , 2020 , 22, 1368-1381	4.3	6	
140	Efficient Water Pollution Abatement. Industrial & Efficient Water Pollution Abatement. Industria	2 <u>3.4</u> 87	4	
139	Modeling alginate encapsulation system for biological hydrogen production. <i>Biotechnology and Bioengineering</i> , 2019 , 116, 3189-3199	4.9	2	
138	Enhanced adsorption of perfluoro alkyl substances for in situ remediation. <i>Environmental Science:</i> Water Research and Technology, 2019 , 5, 1867-1875	4.2	15	
137	Mineral identity, natural organic matter, and repeated contaminant exposures do not affect the carbon and nitrogen isotope fractionation of 2,4-dinitroanisole during abiotic reduction. <i>Environmental Sciences: Processes and Impacts</i> , 2019 , 21, 51-62	4.3	2	
136	Photodegradation of pharmaceutical compounds in partially nitritated wastewater during UV irradiation. <i>Environmental Science: Water Research and Technology</i> , 2019 , 5, 897-909	4.2	10	
135	Quantifying photo-production of triplet excited states and singlet oxygen from effluent organic matter. <i>Water Research</i> , 2019 , 156, 23-33	12.5	35	
134	Iron influence on dissolved color in lakes of the Upper Great Lakes States. <i>PLoS ONE</i> , 2019 , 14, e021197	3 .7	7	
133	Color, chlorophyll a, and suspended solids effects on Secchi depth in lakes: implications for trophic state assessment. <i>Ecological Applications</i> , 2019 , 29, e01871	4.9	32	
132	Quantitative Dissolution of Environmentally Accessible Iron Residing in Iron-Rich Minerals: A Review. <i>ACS Earth and Space Chemistry</i> , 2019 , 3, 1371-1392	3.2	10	
131	Assessment of the chlorine demand and disinfection byproduct formation potential of surface waters via satellite remote sensing. <i>Water Research</i> , 2019 , 165, 115001	12.5	12	
130	In Situ Remediation Method for Enhanced Sorption of Perfluoro-Alkyl Substances onto Ottawa Sand. <i>Journal of Environmental Engineering, ASCE</i> , 2018 , 144, 04018086	2	15	
129	Small and large-scale distribution of four classes of antibiotics in sediment: association with metals and antibiotic resistance genes. <i>Environmental Sciences: Processes and Impacts</i> , 2018 , 20, 1167-1179	4.3	10	
128	Singlet Oxygen Phosphorescence as a Probe for Triplet-State Dissolved Organic Matter Reactivity. <i>Environmental Science & Environmental Science & Envi</i>	10.3	39	
127	Achieving high-rate hydrogen recovery from wastewater using customizable alginate polymer gel matrices encapsulating biomass. <i>Environmental Science: Water Research and Technology</i> , 2018 , 4, 1867-1	8 76	10	
126	Reaction rates and product formation during advanced oxidation of ionic liquid cations by UV/peroxide, UV/persulfate, and UV/chlorine. <i>Environmental Science: Water Research and Technology</i> , 2018 , 4, 1310-1320	4.2	8	

125	Sedimentary record of antibiotic accumulation in Minnesota Lakes. <i>Science of the Total Environment</i> , 2018 , 621, 970-979	10.2	23
124	High Pressure Size Exclusion Chromatography (HPSEC) Determination of Dissolved Organic Matter Molecular Weight Revisited: Accounting for Changes in Stationary Phases, Analytical Standards, and Isolation Methods. <i>Environmental Science & Environmental Science & Environme</i>	10.3	18
123	Multiple linear regression models to predict the formation efficiency of triplet excited states of dissolved organic matter in temperate wetlands. <i>Limnology and Oceanography</i> , 2018 , 63, 1992-2014	4.8	8
122	Redox-induced nucleation and growth of goethite on synthetic hematite nanoparticles. <i>American Mineralogist</i> , 2018 , 103, 1021-1029	2.9	3
121	Mineralogy and buffer identity effects on RDX kinetics and intermediates during reaction with natural and synthetic magnetite. <i>Chemosphere</i> , 2018 , 213, 602-609	8.4	5
120	The relative roles of sorption and biodegradation in the removal of contaminants of emerging concern (CECs) in GAC-sand biofilters. <i>Water Research</i> , 2018 , 146, 67-76	12.5	25
119	Neonicotinoid insecticide hydrolysis and photolysis: Rates and residual toxicity. <i>Environmental Toxicology and Chemistry</i> , 2018 , 37, 2797-2809	3.8	36
118	PFOA and PFOS Are Generated from Zwitterionic and Cationic Precursor Compounds During Water Disinfection with Chlorine or Ozone. <i>Environmental Science and Technology Letters</i> , 2018 , 5, 382-388	11	38
117	Effect of nonreactive kaolinite on 4-chloronitrobenzene reduction by Fe(II) in goethiteRaolinite heterogeneous suspensions. <i>Environmental Science: Nano</i> , 2017 , 4, 325-334	7.1	9
116	Quantifying the electron donating capacities of sulfide and dissolved organic matter in sediment pore waters of wetlands. <i>Environmental Sciences: Processes and Impacts</i> , 2017 , 19, 758-767	4.3	11
115	QSARs for phenols and phenolates: oxidation potential as a predictor of reaction rate constants with photochemically produced oxidants. <i>Environmental Sciences: Processes and Impacts</i> , 2017 , 19, 324-	3 3 8	32
114	Photochemical Transformation of Four Ionic Liquid Cation Structures in Aqueous Solution. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	16
113	The Florence Statement on Triclosan and Triclocarban. <i>Environmental Health Perspectives</i> , 2017 , 125, 064501	8.4	104
112	Reactivity of Triplet Excited States of Dissolved Natural Organic Matter in Stormflow from Mixed-Use Watersheds. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	30
111	Accessible reactive surface area and abiotic redox reactivity of iron oxyhydroxides in acidic brines. <i>Geochimica Et Cosmochimica Acta</i> , 2017 , 197, 345-355	5.5	8
110	Facet-Dependent Oxidative Goethite Growth As a Function of Aqueous Solution Conditions. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	22
109	Transformation of chlorpyrifos and chlorpyrifos-methyl in prairie pothole pore waters. <i>Environmental Sciences: Processes and Impacts</i> , 2016 , 18, 1406-1416	4.3	3
108	Character of Humic Substances as a Predictor for Goethite Nanoparticle Reactivity and Aggregation. <i>Environmental Science & Environmental Science & En</i>	10.3	38

(2015-2016)

107	Contaminants of Emerging Concern: Mass Balance and Comparison of Wastewater Effluent and Upstream Sources in a Mixed-Use Watershed. <i>Environmental Science & Discourse amp; Technology</i> , 2016 , 50, 36-45	10.3	53
106	Sources and transport of contaminants of emerging concern: A two-year study of occurrence and spatiotemporal variation in a mixed land use watershed. <i>Science of the Total Environment</i> , 2016 , 551-552, 605-13	10.2	97
105	Novel Insights into the Distribution of Reduced Sulfur Species in Prairie Pothole Wetland Pore Waters Provided by Bismuth Film Electrodes. <i>Environmental Science and Technology Letters</i> , 2016 , 3, 104	1 ⁻¹ 109	11
104	Phototransformation of pesticides in prairie potholes: effect of dissolved organic matter in triplet-induced oxidation. <i>Environmental Sciences: Processes and Impacts</i> , 2016 , 18, 237-45	4.3	20
103	Abiotic Capture of Stormwater Nitrates with Granular Activated Carbon. <i>Environmental Engineering Science</i> , 2016 , 33, 354-363	2	12
102	Performance of a composite bioactive membrane for H2 production and capture from high strength wastewater. <i>Environmental Science: Water Research and Technology</i> , 2016 , 2, 848-857	4.2	7
101	Seasonal and spatial variabilities in the water chemistry of prairie pothole wetlands influence the photoproduction of reactive intermediates. <i>Chemosphere</i> , 2016 , 155, 640-647	8.4	31
100	Organic matter and iron oxide nanoparticles: aggregation, interactions, and reactivity. <i>Environmental Science: Nano</i> , 2016 , 3, 494-505	7.1	84
99	Estrone degradation: does organic matter (quality), matter?. <i>Environmental Science & Emp; Technology</i> , 2015 , 49, 498-503	10.3	22
98	Dissolved organic matter composition drives the marine production of brominated very short-lived substances. <i>Environmental Science & Environmental Sc</i>	10.3	31
97	Triclosan, chlorinated triclosan derivatives, and hydroxylated polybrominated diphenyl ethers (OH-BDEs) in wastewater effluents. <i>Environmental Science: Water Research and Technology</i> , 2015 , 1, 316	5 -32 5	2
96	Sorption of isoflavones to river sediment and model sorbents and outcomes for larval fish exposed to contaminated sediment. <i>Journal of Hazardous Materials</i> , 2015 , 282, 26-33	12.8	2
95	Sediment-water distribution of contaminants of emerging concern in a mixed use watershed. <i>Science of the Total Environment</i> , 2015 , 505, 896-904	10.2	54
94	Quantification of Hydroxylated Polybrominated Diphenyl Ethers (OH-BDEs), Triclosan, and Related Compounds in Freshwater and Coastal Systems. <i>PLoS ONE</i> , 2015 , 10, e0138805	3.7	11
93	Innovation Promoted by Regulatory Flexibility. Environmental Science & Eamp; Technology, 2015, 49, 1390	8:-9 .3	5
92	Effects of estrone and organic carbon exposure on the transformation of estrone. <i>Environmental Science: Water Research and Technology</i> , 2015 , 1, 457-464	4.2	2
91	Impact of Pahokee Peat humic acid and buffer identity on goethite aggregation and reactivity. <i>Environmental Science: Nano</i> , 2015 , 2, 509-517	7.1	9
90	Performance of a composite bioactive membrane for enhanced BioH2 production and capture from wastewater. <i>Proceedings of the Water Environment Federation</i> , 2015 , 2015, 4412-4412		

89	One electron oxidation potential as a predictor of rate constants of N-containing compounds with carbonate radical and triplet excited state organic matter. <i>Environmental Sciences: Processes and Impacts</i> , 2014 , 16, 832-8	4.3	33
88	Goethite nanoparticle aggregation: effects of buffers, metal ions, and 4-chloronitrobenzene reduction. <i>Environmental Science: Nano</i> , 2014 , 1, 478-487	7.1	34
87	Molecular signature of organic nitrogen in septic-impacted groundwater. <i>Environmental Sciences: Processes and Impacts</i> , 2014 , 16, 2400-7	4.3	17
86	Identifying sources of emerging organic contaminants in a mixed use watershed using principal components analysis. <i>Environmental Sciences: Processes and Impacts</i> , 2014 , 16, 2390-9	4.3	28
85	Evidence of Incorporation of Abiotic S and N into Prairie Wetland Dissolved Organic Matter. <i>Environmental Science and Technology Letters</i> , 2014 , 1, 345-350	11	47
84	Membrane-Assisted Volatile Organic Compound Removal from Aqueous Acrylic Latex Is Faster Than from Aqueous Solutions. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 12420-12427	3.9	3
83	Clustering chlorine reactivity of haloacetic acid precursors in inland lakes. <i>Environmental Science & Environmental &</i>	10.3	42
82	Phytoestrogens in the environment, II: microbiological degradation of phytoestrogens and the response of fathead minnows to degradate exposure. <i>Environmental Toxicology and Chemistry</i> , 2014 , 33, 560-6	3.8	5
81	Phytoestrogens in the environment, I: occurrence and exposure effects on fathead minnows. <i>Environmental Toxicology and Chemistry</i> , 2014 , 33, 553-9	3.8	32
80	Pesticide photolysis in prairie potholes: probing photosensitized processes. <i>Environmental Science & Environmental Science</i>	10.3	164
79	Experimental and theoretical insights into the involvement of radicals in triclosan phototransformation. <i>Environmental Science & Environmental & Envi</i>	10.3	53
78	Quantification of triclosan, chlorinated triclosan derivatives, and their dioxin photoproducts in lacustrine sediment cores. <i>Environmental Science & Environmental Science & </i>	10.3	78
77	Impact of organic carbon on the biodegradation of estrone in mixed culture systems. <i>Environmental Science & Environmental Sci</i>	10.3	34
76	Direct photochemistry of three fluoroquinolone antibacterials: norfloxacin, ofloxacin, and enrofloxacin. <i>Water Research</i> , 2013 , 47, 439-48	12.5	153
75	Microscale characterization of sulfur speciation in lake sediments. <i>Environmental Science & Environmental Science & Technology</i> , 2013 , 47, 1287-96	10.3	56
74	Halogenation of bisphenol-A, triclosan, and phenols in chlorinated waters containing iodide. <i>Environmental Science & Environmental Science & Environm</i>	10.3	49
73	Sources and composition of sediment pore-water dissolved organic matter in prairie pothole lakes. <i>Limnology and Oceanography</i> , 2013 , 58, 1136-1146	4.8	56
72	Water chemistry: fifty years of change and progress. <i>Environmental Science & Environmental Science & </i>	10.3	19

71	Potential for abiotic reduction of pesticides in Prairie pothole porewaters. <i>Environmental Science & Environmental Science & Environmental Science</i>	10.3	73
70	Hydroxyl radical formation upon oxidation of reduced humic acids by oxygen in the dark. <i>Environmental Science & Environmental Science & amp; Technology</i> , 2012 , 46, 1590-7	10.3	137
69	Photochemical formation of brominated dioxins and other products of concern from hydroxylated polybrominated diphenyl ethers (OH-PBDEs). <i>Environmental Science & Environmental Science & Environmenta</i>	3 ¹ 0.3	47
68	Direct and indirect photolysis of the phytoestrogens genistein and daidzein. <i>Environmental Science & Environmental Science</i>	10.3	52
67	Using nitrogen isotope fractionation to assess the oxidation of substituted anilines by manganese oxide. <i>Environmental Science & Environmental Scienc</i>	10.3	33
66	Direct and indirect photolysis of sulfamethoxazole and trimethoprim in wastewater treatment plant effluent. <i>Water Research</i> , 2011 , 45, 1280-6	12.5	204
65	Removal and formation of chlorinated triclosan derivatives in wastewater treatment plants using chlorine and UV disinfection. <i>Chemosphere</i> , 2011 , 84, 1238-43	8.4	34
64	Reprint of: Removal and formation of chlorinated triclosan derivatives in wastewater treatment plants using chlorine and UV disinfection. <i>Chemosphere</i> , 2011 , 85, 284-9	8.4	13
63	Pesticide processing potential in prairie pothole porewaters. <i>Environmental Science & Environmental &</i>	10.3	61
62	pH-dependent equilibrium isotope fractionation associated with the compound specific nitrogen and carbon isotope analysis of substituted anilines by SPME-GC/IRMS. <i>Analytical Chemistry</i> , 2011 , 83, 1641-8	7.8	39
61	Assessing the contribution of free hydroxyl radical in organic matter-sensitized photohydroxylation reactions. <i>Environmental Science & Environmental </i>	10.3	158
60	On the need for a National (U.S.) research program to elucidate the potential risks to human health and the environment posed by contaminants of emerging concern. <i>Environmental Science & Environmental Science & Technology</i> , 2011 , 45, 3829-30	10.3	24
59	Barrier properties of poly(vinyl alcohol) membranes containing carbon nanotubes or activated carbon. <i>Journal of Hazardous Materials</i> , 2011 , 188, 334-40	12.8	10
58	Zero-Valent Iron: Impact of Anions Present during Synthesis on Subsequent Nanoparticle Reactivity. <i>Journal of Environmental Engineering, ASCE</i> , 2011 , 137, 889-896	2	17
57	Reactivity of alkyl polyhalides toward granular iron: development of QSARs and reactivity cross correlations for reductive dehalogenation. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	19
56	Kinetics and mechanisms of N-nitrosodimethylamine formation upon ozonation of N,N-dimethylsulfamide-containing waters: bromide catalysis. <i>Environmental Science & amp; Technology</i> , 2010 , 44, 5762-8	10.3	123
55	Dioxin photoproducts of triclosan and its chlorinated derivatives in sediment cores. <i>Environmental Science & Environmental Sc</i>	10.3	117
54	Terephthalate as a probe for photochemically generated hydroxyl radical. <i>Journal of Environmental Monitoring</i> , 2010 , 12, 1658-65		167

53	Correlations between in situ sensor measurements and trace organic pollutants in urban streams. Journal of Environmental Monitoring, 2010 , 12, 225-33		12
52	A comparison of total maximum daily load (TMDL) calculations in urban streams using near real-time and periodic sampling data. <i>Journal of Environmental Monitoring</i> , 2010 , 12, 234-41		15
51	TBAA reduction in reactors simulating distribution system pipes. <i>Journal - American Water Works Association</i> , 2010 , 102, 99-106	0.5	3
50	Sorptive and Reactive Scavenger-Containing Sandwich Membranes as Contaminant Barriers. Journal of Environmental Engineering, ASCE, 2009, 135, 69-76	2	4
49	Aquatic photochemistry of chlorinated triclosan derivatives: potential source of polychlorodibenzo-p-dioxins. <i>Environmental Toxicology and Chemistry</i> , 2009 , 28, 2555-63	3.8	100
48	Photochemical formation of halogenated dioxins from hydroxylated polybrominated diphenyl ethers (OH-PBDEs) and chlorinated derivatives (OH-PBCDEs). <i>Environmental Science & Environmental Science & E</i>	10.3	54
47	Geomembranes containing powdered activated carbon have the potential to improve containment of chlorinated aromatic contaminants. <i>Environmental Science & Environmental Scien</i>	10.3	2
46	Photolysis of chlortetracycline on a clay surface. <i>Journal of Agricultural and Food Chemistry</i> , 2009 , 57, 6932-7	5.7	23
45	Discovering Teleconnected Flow Anomalies: A Relationship Analysis of Dynamic Neighborhoods (RAD) Approach. <i>Lecture Notes in Computer Science</i> , 2009 , 44-61	0.9	2
44	Substituent effects on nitrogen isotope fractionation during abiotic reduction of nitroaromatic compounds. <i>Environmental Science & Environmental Scie</i>	10.3	58
43	Degradation of trichloronitromethane by iron water main corrosion products. <i>Water Research</i> , 2008 , 42, 2043-50	12.5	22
42	Variability of nitrogen isotope fractionation during the reduction of nitroaromatic compounds with dissolved reductants. <i>Environmental Science & Environmental Science & Envi</i>	10.3	51
41	Evaluation of functional groups responsible for chloroform formation during water chlorination using compound specific isotope analysis. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	51
40	Degradation of Halogenated Disinfection Byproducts in Water Distribution Systems. <i>ACS Symposium Series</i> , 2008 , 334-348	0.4	3
39	Environmental photochemistry of tylosin: efficient, reversible photoisomerization to a less-active isomer, followed by photolysis. <i>Journal of Agricultural and Food Chemistry</i> , 2007 , 55, 7062-8	5.7	26
38	Unexpected products and reaction mechanisms of the aqueous chlorination of cimetidine. <i>Environmental Science & Environmental </i>	10.3	56
37	Diffusion of mobile products in reactive barrier membranes. <i>Journal of Membrane Science</i> , 2007 , 291, 111-119	9.6	6
36	Chapter 3.2 Transformation of pharmaceuticals in the environment: Photolysis and other abiotic processes. <i>Comprehensive Analytical Chemistry</i> , 2007 , 361-385	1.9	12

(2004-2007)

35	The characterization and quantification of methanotrophic bacterial populations in constructed wetland sediments using PCR targeting 16S rRNA gene fragments. <i>Applied Soil Ecology</i> , 2007 , 35, 648-65	59	37
34	Effects of dissolved oxygen and iron aging on the reduction of trichloronitromethane, trichloracetonitrile, and trichloropropanone. <i>Chemosphere</i> , 2007 , 66, 2127-35	8.4	35
33	Degradation of disinfection byproducts by carbonate green rust. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	36
32	High-Density Polyethylene Membrane Containing Fe0 as a Contaminant Barrier. <i>Journal of Environmental Engineering, ASCE</i> , 2006 , 132, 803-809	2	7
31	Aquatic photochemistry of nitrofuran antibiotics. <i>Environmental Science & Environmental Science & Env</i>	10.3	85
30	Kinetic and microscopic studies of reductive transformations of organic contaminants on goethite. <i>Environmental Science & Environmental Science & Env</i>	10.3	67
29	Reactivity of substituted benzotrichlorides toward granular iron, Cr(II), and an iron(II) porphyrin: A correlation analysis. <i>Environmental Science & Environmental Science</i> & Technology, 2006 , 40, 4253-60	10.3	10
28	Water hardness as a photochemical parameter: tetracycline photolysis as a function of calcium concentration, magnesium concentration, and pH. <i>Environmental Science & amp; Technology</i> , 2006 , 40, 7236-41	10.3	122
27	Changes in antibacterial activity of triclosan and sulfa drugs due to photochemical transformations. <i>Environmental Toxicology and Chemistry</i> , 2006 , 25, 1480-6	3.8	35
26	Degradation of drinking water disinfection byproducts by synthetic goethite and magnetite. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	75
25	Permeable membranes containing crystalline silicotitanate as model barriers for cesium ion. <i>Environmental Science & Environmental Science & Environme</i>	10.3	5
24	Triplet-sensitized photodegradation of sulfa drugs containing six-membered heterocyclic groups: identification of an SO2 extrusion photoproduct. <i>Environmental Science & amp; Technology</i> , 2005 , 39, 3630-8	10.3	278
23	Environmental photodegradation of mefenamic acid. <i>Chemosphere</i> , 2005 , 58, 1339-46	8.4	77
22	Aqueous photochemistry of triclosan: formation of 2,4-dichlorophenol, 2,8-dichlorodibenzo-p-dioxin, and oligomerization products. <i>Environmental Toxicology and Chemistry</i> , 2005 , 24, 517-25	3.8	212
21	Degradation of chloropicrin in the presence of zero-valent iron. <i>Environmental Toxicology and Chemistry</i> , 2005 , 24, 3037-42	3.8	24
20	Preparation of 14C2-cis-1,2-dichloroethylene from 14C2-trichloroethylene using a cobalt porphyrin catalyst. <i>Journal of Labelled Compounds and Radiopharmaceuticals</i> , 2005 , 48, 353-357	1.9	2
19	Response to Comment on A Polymer Membrane Containing Fe0 as a Contaminant Barrier Environmental Science & Technology, 2004, 38, 5264-5264	10.3	
18	Kinetics of haloacetic acid reactions with Fe(0). Environmental Science & Eamp; Technology, 2004, 38, 6881	-9 0.3	77

17	A polymer membrane containing Fe(0) as a contaminant barrier. <i>Environmental Science & Environmental &</i>	10.3	31
16	Photochemical fate of sulfa drugs in the aquatic environment: sulfa drugs containing five-membered heterocyclic groups. <i>Environmental Science & Environmental Science & Envir</i>	10.3	488
15	Photochemical fate of pharmaceuticals in the environment: Naproxen, diclofenac, clofibric acid, and ibuprofen. <i>Aquatic Sciences</i> , 2003 , 65, 342-351	2.5	326
14	Photodegradation of pharmaceuticals in the aquatic environment: A review. <i>Aquatic Sciences</i> , 2003 , 65, 320-341	2.5	364
13	Photochemical conversion of triclosan to 2,8-dichlorodibenzo-p-dioxin in aqueous solution. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2003 , 158, 63-66	4.7	206
12	Photochemical fate of pharmaceuticals in the environment: cimetidine and ranitidine. <i>Environmental Science & Environmental Sc</i>	10.3	219
11	Measurement and Estimation of Henry's Law Constants of Chlorinated Ethylenes in Aqueous Surfactant Solutions. <i>Journal of Chemical & Engineering Data</i> , 2003 , 48, 253-261	2.8	24
10	Abiotic reduction of dinitroaniline herbicides. <i>Water Research</i> , 2003 , 37, 4191-201	12.5	41
9	Henry's Law Constants of Chlorinated Ethylenes in Aqueous Alcohol Solutions: Measurement, Estimation, and Thermodynamic Analysis. <i>Journal of Chemical & C</i>	90 ^{2.8}	9
8	Reductive dechlorination of 1,1,2,2-tetrachloroethane. <i>Environmental Science & Environmental Science </i>	10.3	69
7	Reduction of haloacetic acids by Fe0: implications for treatment and fate. <i>Environmental Science & Environmental Science & Environmental Science</i>	10.3	99
6	Inter- and Intraspecies Competitive Effects in Reactions of Chlorinated Ethylenes with Zero-Valent Iron in Column Reactors. <i>Environmental Engineering Science</i> , 2000 , 17, 291-302	2	32
5	Pathways and Kinetics of Chlorinated Ethylene and Chlorinated Acetylene Reaction with Fe(0) Particles. <i>Environmental Science & Environmental Science </i>	10.3	556
4	Polychlorinated ethane reaction with zero-valent zinc: pathways and rate control. <i>Journal of Contaminant Hydrology</i> , 1999 , 40, 183-200	3.9	89
3	Pathways of Chlorinated Ethylene and Chlorinated Acetylene Reaction with Zn(0). <i>Environmental Science & Environmental Science</i>	10.3	140
2	Reductive Elimination of Chlorinated Ethylenes by Zero-Valent Metals. <i>Environmental Science & Environmental Science</i>	10.3	356
1	Iron filings application to reduce lake sediment phosphorus release. <i>Lake and Reservoir Management</i> ,1-19	1.3	3