Tapas Mitra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7570534/publications.pdf Version: 2024-02-01

Τλάλς Μίταλ

#	Article	IF	CITATIONS
1	Nanosensing of Pesticides by Zinc Oxide Quantum Dot: An Optical and Electrochemical Approach for the Detection of Pesticides in Water. Journal of Agricultural and Food Chemistry, 2018, 66, 414-423.	2.4	99
2	Potential use of curcumin loaded carboxymethylated guar gum grafted gelatin film for biomedical applications. International Journal of Biological Macromolecules, 2015, 75, 437-446.	3.6	76
3	Preparation of guar gum scaffold film grafted with ethylenediamine and fish scale collagen, cross-linked with ceftazidime for wound healing application. Carbohydrate Polymers, 2016, 153, 573-581.	5.1	73
4	Studies on Cross-linking of succinic acid with chitosan/collagen. Materials Research, 2013, 16, 755-765.	0.6	69
5	Curcumin loaded nano graphene oxide reinforced fish scale collagen – a 3D scaffold biomaterial for wound healing applications. RSC Advances, 2015, 5, 98653-98665.	1.7	63
6	Organically modified clay supported chitosan/hydroxyapatite-zinc oxide nanocomposites with enhanced mechanical and biological properties for the application in bone tissue engineering. International Journal of Biological Macromolecules, 2018, 106, 11-19.	3.6	60
7	Preparation and characterization of a thermostable and biodegradable biopolymers using natural cross-linker. International Journal of Biological Macromolecules, 2011, 48, 276-285.	3.6	51
8	Multifunctional zirconium oxide doped chitosan based hybrid nanocomposites as bone tissue engineering materials. Carbohydrate Polymers, 2016, 151, 879-888.	5.1	49
9	Characterization and evaluation of curcumin loaded guar gum/polyhydroxyalkanoates blend films for wound healing applications. RSC Advances, 2015, 5, 63489-63501.	1.7	46
10	Development of bone-like zirconium oxide nanoceramic modified chitosan based porous nanocomposites for biomedical application. International Journal of Biological Macromolecules, 2017, 95, 348-356.	3.6	45
11	Development of porous and antimicrobial CTS–PEG–HAP–ZnO nano-composites for bone tissue engineering. RSC Advances, 2015, 5, 99385-99393.	1.7	30
12	Preparation and characterization of malonic acid cross-linked chitosan and collagen 3D scaffolds: an approach on non-covalent interactions. Journal of Materials Science: Materials in Medicine, 2012, 23, 1309-1321.	1.7	29
13	Could glutaric acid (GA) replace glutaraldehyde in the preparation of biocompatible biopolymers with high mechanical and thermal properties?. Journal of Chemical Sciences, 2014, 126, 127-140.	0.7	28
14	Metal oxide QD based ultrasensitive microsphere fluorescent sensor for copper, chromium and iron ions in water. RSC Advances, 2020, 10, 9512-9524.	1.7	28
15	Engineering of chitosan and collagen macromolecules using sebacic acid for clinical applications. Progress in Biomaterials, 2013, 2, 11.	1.8	25
16	Mechanical and biological investigations of chitosan–polyvinyl alcohol based ZrO ₂ doped porous hybrid composites for bone tissue engineering applications. New Journal of Chemistry, 2017, 41, 7524-7530.	1.4	23
17	Synthesis of a carboxymethylated guar gum grafted polyethyleneimine copolymer as an efficient gene delivery vehicle. RSC Advances, 2016, 6, 13730-13741.	1.7	22
18	Chromium-assisted immobilization of N-isopropylacrylamide-based methacrylic acid copolymers on collagen and leather surfaces: thermo-responsive behaviour. RSC Advances, 2013, 3, 16626.	1.7	21

TAPAS MITRA

#	Article	IF	CITATIONS
19	Di-carboxylic acid cross-linking interactions improves thermal stability and mechanical strength of reconstituted type I collagen. Journal of Thermal Analysis and Calorimetry, 2011, 105, 325-330.	2.0	19
20	The Effect of Pimelic Acid Interaction on the Mechanical and Thermal Properties of Chitosan and Collagen. International Journal of Polymeric Materials and Polymeric Biomaterials, 2013, 62, 572-582.	1.8	18
21	Cross-linking with acid chlorides improves thermal and mechanical properties of collagen based biopolymer material. Thermochimica Acta, 2011, 525, 50-55.	1.2	16
22	Development of biomimetic nanocomposites as bone extracellular matrix for human osteoblastic cells. Carbohydrate Polymers, 2016, 141, 82-91.	5.1	16
23	Adipic acid interaction enhances the mechanical and thermal stability of natural polymers. Journal of Applied Polymer Science, 2012, 125, E490.	1.3	14
24	Fabrication of porous magnetic nanocomposites for bone tissue engineering. New Journal of Chemistry, 2017, 41, 190-197.	1.4	11
25	Bonding interactions and stability assessment of biopolymer material prepared using type III collagen of avian intestine and anionic polysaccharides. Journal of Materials Science: Materials in Medicine, 2011, 22, 1419-1429.	1.7	10
26	Suberic Acid Acts as a Dissolving Agent as Well as a Crosslinker for Natural Polymers (Carbohydrate) Tj ETQq0 0 0 Macromolecular Science - Pure and Applied Chemistry, 2012, 49, 619-629.	rgBT /Ove 1.2	erlock 10 Tf 6
27	Exploring the dual role of \hat{l}_{\pm} , \hat{l}_{∞} -di-carboxylic acids in the preparation of collagen based biomaterial.	1.3	5