Chen Ci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7570452/publications.pdf

Version: 2024-02-01

687363 713466 21 973 13 21 citations h-index g-index papers 21 21 21 790 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Robust Output Regulation and Reinforcement Learning-Based Output Tracking Design for Unknown Linear Discrete-Time Systems. IEEE Transactions on Automatic Control, 2023, 68, 2391-2398.	5.7	16
2	Resilient Cooperative Control for Networked Lagrangian Systems Against DoS Attacks. IEEE Transactions on Cybernetics, 2022, 52, 836-848.	9.5	19
3	Adaptive Resilient Secondary Control for Microgrids With Communication Faults. IEEE Transactions on Cybernetics, 2022, 52, 8493-8503.	9.5	23
4	Homotopic policy iteration-based learning design for unknown linear continuous-time systems. Automatica, 2022, 138, 110153.	5.0	15
5	Adaptive Formation Control of Networked Robotic Systems With Bearing-Only Measurements. IEEE Transactions on Cybernetics, 2021, 51, 199-209.	9.5	82
6	Eventâ€based resilience to DoS attacks on communication for consensus of networked Lagrangian systems. International Journal of Robust and Nonlinear Control, 2021, 31, 1834-1850.	3.7	11
7	Adaptive distributed synchronization of heterogeneous multi-Agent systems over directed graphs with time-Varying edge weights. Journal of the Franklin Institute, 2021, 358, 2434-2452.	3.4	6
8	Resilience for Communication Faults in Reactive Power Sharing of Microgrids. IEEE Transactions on Smart Grid, 2021, 12, 2788-2799.	9.0	13
9	Resilient leader tracking for networked Lagrangian systems under DoS attacks. Information Sciences, 2021, 577, 622-637.	6.9	11
10	Remaining useful life prediction with insufficient degradation data based on deep learning approach. Eksploatacja I Niezawodnosc, 2021, 23, 745-756.	2.0	1
11	Adaptive synchronization of multi-agent systems with resilience to communication link faults. Automatica, 2020, 111, 108636.	5.0	79
12	Off-policy learning for adaptive optimal output synchronization of heterogeneous multi-agent systems. Automatica, 2020, 119, 109081.	5.0	49
13	Vision-Based Adaptive Neural Positioning Control of Quadrotor Aerial Robot. IEEE Access, 2019, 7, 75018-75031.	4.2	6
14	Optimal Multi-Objective Burn-In Policy Based on Time-Transformed Wiener Degradation Process. IEEE Access, 2019, 7, 73529-73539.	4.2	5
15	Reinforcement Learning-Based Adaptive Optimal Exponential Tracking Control of Linear Systems With Unknown Dynamics. IEEE Transactions on Automatic Control, 2019, 64, 4423-4438.	5.7	134
16	Optimal Burn-in Strategy for High Reliable Products Using Convolutional Neural Network. IEEE Access, 2019, 7, 178511-178521.	4.2	3
17	Fully Distributed Resilience for Adaptive Exponential Synchronization of Heterogeneous Multiagent Systems Against Actuator Faults. IEEE Transactions on Automatic Control, 2019, 64, 3347-3354.	5.7	55
	Resilient adaptive and <mml:math <="" display="inline" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td></td><td></td></mml:math>		

Resilient adaptive and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll" id="d1e270" altimg="si8.gif"><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mi>a^ž</mml:mi>a^ž</mml:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mnl:mrow></mn

CHEN CI

#	Article	IF	CITATIONS
19	Adaptive Compensation for Nonlinear Time-Varying Multiagent Systems With Actuator Failures and Unknown Control Directions. IEEE Transactions on Cybernetics, 2019, 49, 1780-1790.	9.5	31
20	Adaptive Consensus of Nonlinear Multi-Agent Systems With Non-Identical Partially Unknown Control Directions and Bounded Modelling Errors. IEEE Transactions on Automatic Control, 2017, 62, 4654-4659.	5.7	169
21	Saturated Nussbaum Function Based Approach for Robotic Systems With Unknown Actuator Dynamics. IEEE Transactions on Cybernetics, 2016, 46, 2311-2322.	9.5	114