Timo Strünker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7569792/publications.pdf Version: 2024-02-01

LIMO STRÅ14NKER

#	Article	IF	CITATIONS
1	The CatSper channel mediates progesterone-induced Ca2+ influx in human sperm. Nature, 2011, 471, 382-386.	27.8	500
2	Fast manipulation of cellular cAMP level by light in vivo. Nature Methods, 2007, 4, 39-42.	19.0	237
3	The CatSper channel: a polymodal chemosensor in human sperm. EMBO Journal, 2012, 31, 1654-1665.	7.8	202
4	Molecular and functional characterization of an octopamine receptor from honeybee (Apis mellifera) brain. Journal of Neurochemistry, 2003, 86, 725-735.	3.9	162
5	A family of octapamine receptors that specifically induce cyclic AMP production or Ca2+release inDrosophila melanogaster. Journal of Neurochemistry, 2005, 93, 440-451.	3.9	155
6	Direct action of endocrine disrupting chemicals on human sperm. EMBO Reports, 2014, 15, 758-765.	4.5	137
7	A K+-selective cGMP-gated ion channel controls chemosensation of sperm. Nature Cell Biology, 2006, 8, 1149-1154.	10.3	106
8	Controlling fertilization and cAMP signaling in sperm by optogenetics. ELife, 2015, 4, .	6.0	99
9	The Ca2+-activated K+ current of human sperm is mediated by Slo3. ELife, 2014, 3, e01438.	6.0	94
10	The <scp>C</scp> at <scp>S</scp> per channel controls chemosensation in sea urchin sperm. EMBO Journal, 2015, 34, 379-392.	7.8	93
11	A novel biosensor to study cAMP dynamics in cilia and flagella. ELife, 2016, 5, .	6.0	79
12	An Atypical CNG Channel Activated by a Single cGMP Molecule Controls Sperm Chemotaxis. Science Signaling, 2009, 2, ra68.	3.6	66
13	Signaling in Sperm: More Different than Similar. Trends in Cell Biology, 2017, 27, 101-109.	7.9	66
14	A novel crossâ€species inhibitor to study the function of CatSper Ca ²⁺ channels in sperm. British Journal of Pharmacology, 2018, 175, 3144-3161.	5.4	60
15	Postâ€ŧranslational cleavage of Hv1 in human sperm tunes pH―and voltageâ€dependent gating. Journal of Physiology, 2017, 595, 1533-1546.	2.9	48
16	CRIS—A Novel cAMP-Binding Protein Controlling Spermiogenesis and the Development of Flagellar Bending. PLoS Genetics, 2013, 9, e1003960.	3.5	45
17	CRISP2 Is a Regulator of Multiple Aspects of Sperm Function and Male Fertility. Endocrinology, 2019, 160, 915-924.	2.8	43
18	Synergistic activation of CatSper Ca2+ channels in human sperm by oviductal ligands and endocrine disrupting chemicals. Human Reproduction, 2018, 33, 1915-1923.	0.9	42

TIMO STRüNKER

#	Article	IF	CITATIONS
19	Rotational motion and rheotaxis of human sperm do not require functional CatSper channels and transmembrane Ca ²⁺ signaling. EMBO Journal, 2020, 39, e102363.	7.8	42
20	Motility of efferent duct cilia aids passage of sperm cells through the male reproductive system. Molecular Human Reproduction, 2021, 27, .	2.8	37
21	CFAP45 deficiency causes situs abnormalities and asthenospermia by disrupting an axonemal adenine nucleotide homeostasis module. Nature Communications, 2020, 11, 5520.	12.8	36
22	High density and ligand affinity confer ultrasensitive signal detection by a guanylyl cyclase chemoreceptor. Journal of Cell Biology, 2014, 206, 541-557.	5.2	35
23	Action of steroids and plant triterpenoids on CatSper Ca ²⁺ channels in human sperm. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E344-E346.	7.1	33
24	At the physical limit — chemosensation in sperm. Current Opinion in Neurobiology, 2015, 34, 110-116.	4.2	28
25	The Ca2+ channel CatSper is not activated by cAMP/PKA signaling but directly affected by chemicals used to probe the action of cAMP and PKA. Journal of Biological Chemistry, 2020, 295, 13181-13193.	3.4	27
26	Absolute proteomic quantification reveals design principles of sperm flagellar chemosensation. EMBO Journal, 2020, 39, e102723.	7.8	22
27	The Natural Plant Product Rottlerin Activates Kv7.1/KCNE1 Channels. Cellular Physiology and Biochemistry, 2016, 40, 1549-1558.	1.6	20
28	Molecular Mechanism Underlying the Action of Zona-pellucida Glycoproteins on Mouse Sperm. Frontiers in Cell and Developmental Biology, 2020, 8, 572735.	3.7	19
29	Kinetic and photonic techniques to study chemotactic signaling in sea urchin sperm. Methods in Cell Biology, 2019, 151, 487-517.	1.1	15
30	The Action of Reproductive Fluids and Contained Steroids, Prostaglandins, and Zn2+ on CatSper Ca2+ Channels in Human Sperm. Frontiers in Cell and Developmental Biology, 2021, 9, 699554.	3.7	15
31	The antidepressant Sertraline inhibits CatSper Ca2+ channels in human sperm. Human Reproduction, 2021, 36, 2638-2648.	0.9	15
32	Cyclic Nucleotide-Specific Optogenetics Highlights Compartmentalization of the Sperm Flagellum into cAMP Microdomains. Cells, 2019, 8, 648.	4.1	14
33	4,4'-Diisothiocyanato-2,2'-Stilbenedisulfonic Acid (DIDS) Modulates the Activity of KCNQ1/KCNE1 Channels by an Interaction with the Central Pore Region. Cellular Physiology and Biochemistry, 2020, 54, 321-332.	1.6	6
34	A family of octopamine receptors that specifically induce cyclic AMP production or Ca2+ release in Drosophila melanogaster. Journal of Neurochemistry, 2005, 94, 1168-1168.	3.9	3
35	An Assay to Determine Mechanisms of Rapid Autoantibody-Induced Neurotransmitter Receptor Endocytosis and Vesicular Trafficking in Autoimmune Encephalitis. Frontiers in Neurology, 2019, 10, 178.	2.4	2
36	Non-Genomic Progesterone Signalling in Human Sperm. Biophysical Journal, 2013, 104, 611a.	0.5	0

#	Article	IF	CITATIONS
37	Larry Cohen—50 ways to DYE your science. Neurophotonics, 2015, 2, 021004.	3.3	0
38	High density and ligand affinity confer ultrasensitive signal detection by a guanylyl cyclase chemoreceptor. Journal of General Physiology, 2014, 144, 1443OIA35.	1.9	0