
Marcelo Bispo de Jesus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7569789/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cell-surface glycosaminoglycans regulate the cellular uptake of charged polystyrene nanoparticles. Nanoscale, 2022, 14, 7350-7363.	2.8	4
2	Mechanistic insights into the intracellular release of doxorubicin from pH-sensitive liposomes. Biomedicine and Pharmacotherapy, 2021, 134, 110952.	2.5	15
3	Addendum: Cruz, B., et al. Leucine-Rich Diet Modulates the Metabolomic and Proteomic Profile of Skeletal Muscle during Cancer Cachexia. Cancers 2020, 12, 1880. Cancers, 2021, 13, 880.	1.7	Ο
4	Dact1 is expressed during chicken and mouse skeletal myogenesis and modulated in human muscle diseases. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2021, 256, 110645.	0.7	5
5	OUP accepted manuscript. Journal of Pharmacy and Pharmacology, 2021, , .	1.2	2
6	Leucine-Rich Diet Improved Muscle Function in Cachectic Walker 256 Tumour-Bearing Wistar Rats. Cells, 2021, 10, 3272.	1.8	7
7	Gene Therapy & Cell Therapy. Current Gene Therapy, 2021, 21, 361-361.	0.9	1
8	The in vivo toxicological profile of cationic solid lipid nanoparticles. Drug Delivery and Translational Research, 2020, 10, 34-42.	3.0	14
9	High-throughput conventional and stealth cationic liposome synthesis using a chaotic advection-based microfluidic device combined with a centrifugal vacuum concentrator. Chemical Engineering Journal, 2020, 382, 122821.	6.6	16
10	The toxicity of silver nanomaterials (NM 300K) is reduced when combined with N-Acetylcysteine: Hazard assessment on Enchytraeus crypticus. Environmental Pollution, 2020, 256, 113484.	3.7	10
11	Thiol-antioxidants interfere with assessing silver nanoparticle cytotoxicity. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 24, 102130.	1.7	15
12	Leucine-Rich Diet Modulates the Metabolomic and Proteomic Profile of Skeletal Muscle during Cancer Cachexia. Cancers, 2020, 12, 1880.	1.7	17
13	Lignin derivatives stabilizing oil-in-water emulsions: Technological aspects, interfacial rheology and cytotoxicity. Industrial Crops and Products, 2020, 154, 112762.	2.5	32
14	Galectin-3 Expression in Pancreatic Cell Lines Under Distinct Autophagy-Inducing Stimulus. Microscopy and Microanalysis, 2020, 26, 1187-1197.	0.2	4
15	Protective effect of N-acetylcysteine on the toxicity of silver nanoparticles: Bioavailability and toxicokinetics in Enchytraeus crypticus. Science of the Total Environment, 2020, 715, 136797.	3.9	9
16	Evaluation of cytotoxicity of nanolipid carriers with structured Buriti oil in the Caco-2 and HepG2 cell lines. Bioprocess and Biosystems Engineering, 2020, 43, 1105-1118.	1.7	5
17	Bacterial anti-microbial peptides and nano-sized drug delivery systems: The state of the art toward improved bacteriocins. Journal of Controlled Release, 2020, 321, 100-118.	4.8	62
18	PyScratch: An ease of use tool for analysis of scratch assays. Computer Methods and Programs in Biomedicine, 2020, 193, 105476.	2.6	8

MARCELO BISPO DE JESUS

#	Article	IF	CITATIONS
19	Biogenic silver nanoparticles: In vitro and in vivo antitumor activity in bladder cancer. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 151, 162-170.	2.0	26
20	Graphene-Based Nanomaterials in Soil: Ecotoxicity Assessment Using Enchytraeus crypticus Reduced Full Life Cycle. Nanomaterials, 2019, 9, 858.	1.9	15
21	Butyrate Protects Mice from Clostridium difficile-Induced Colitis through an HIF-1-Dependent Mechanism. Cell Reports, 2019, 27, 750-761.e7.	2.9	212
22	A Mechanistic View of Interactions of a Nanoherbicide with Target Organism. Journal of Agricultural and Food Chemistry, 2019, 67, 4453-4462.	2.4	75
23	N-Acetylcysteine reverses silver nanoparticle intoxication in rats. Nanotoxicology, 2019, 13, 326-338.	1.6	18
24	The polygonal model: A simple representation of biomolecules as a tool for teaching metabolism. Biochemistry and Molecular Biology Education, 2018, 46, 66-75.	0.5	0
25	NLRP3 inflammasome is involved in the recognition of Paracoccidioides brasiliensis by human dendritic cells and in the induction of Th17 cells. Journal of Infection, 2018, 77, 137-144.	1.7	28
26	Solid lipid nanoparticles release DNA upon endosomal acidification in human embryonic kidney cells. Nanotechnology, 2018, 29, 315102.	1.3	16
27	Soft Nanohydrogels Based on Laponite Nanodiscs: A Versatile Drug Delivery Platform for Theranostics and Drug Cocktails. ACS Applied Materials & Interfaces, 2018, 10, 21891-21900.	4.0	39
28	Current Challenges and Future of Lipid Nanoparticles Formulations for Topical Drug Application to Oral Mucosa, Skin, and Eye. Current Pharmaceutical Design, 2018, 23, 6659-6675.	0.9	24
29	Integrated microfluidic devices for the synthesis of nanoscale liposomes and lipoplexes. Colloids and Surfaces B: Biointerfaces, 2017, 152, 406-413.	2.5	29
30	Nanomaterials in the Environment: Perspectives on in Vivo Terrestrial Toxicity Testing. Frontiers in Environmental Science, 2017, 5, .	1.5	8
31	Reduced graphene oxide: nanotoxicological profile in rats. Journal of Nanobiotechnology, 2016, 14, 53.	4.2	54
32	Synthesis, characterization, and cytotoxicity of glutathione-PEG-iron oxide magnetic nanoparticles. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	19
33	How Lipid Cores Affect Lipid Nanoparticles as Drug and Gene Delivery Systems. Advances in Biomembranes and Lipid Self-Assembly, 2016, , 1-42.	0.3	5
34	PEGylation of Reduced Graphene Oxide Induces Toxicity in Cells of the Blood–Brain Barrier: An <i>in Vitro</i> and <i>in Vivo</i> Study. Molecular Pharmaceutics, 2016, 13, 3913-3924.	2.3	71
35	Microfluidic Assembly of pDNA/Cationic Liposome Lipoplexes with High pDNA Loading for Gene Delivery. Langmuir, 2016, 32, 1799-1807.	1.6	36
36	Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 789-799.	1.7	1,082

#	Article	IF	CITATIONS
37	Reduced graphene oxide induces transient blood–brain barrier opening: an in vivo study. Journal of Nanobiotechnology, 2015, 13, 78.	4.2	87
38	Evaluation of the side effects of poly(epsilon-caprolactone) nanocapsules containing atrazine toward maize plants. Frontiers in Chemistry, 2015, 3, 61.	1.8	41
39	Nanoencapsulation Enhances the Post-Emergence Herbicidal Activity of Atrazine against Mustard Plants. PLoS ONE, 2015, 10, e0132971.	1.1	132
40	Solid lipid nanoparticles as nucleic acid delivery system: Properties and molecular mechanisms. Journal of Controlled Release, 2015, 201, 1-13.	4.8	106
41	Chitosan nanoparticles produced with the gradual temperature decrease technique for sustained gene delivery. Biochemical Engineering Journal, 2015, 103, 114-121.	1.8	16
42	Factorial Design and Development of Solid Lipid Nanoparticles (SLN) for Gene Delivery. Journal of Nanoscience and Nanotechnology, 2015, 15, 1793-1800.	0.9	18
43	Cellular Mechanisms in Nanomaterial Internalization, Intracellular Trafficking, and Toxicity. Nanomedicine and Nanotoxicology, 2014, , 201-227.	0.1	17
44	Inclusion of the Helper Lipid Dioleoyl-Phosphatidylethanolamine in Solid Lipid Nanoparticles Inhibits Their Transfection Efficiency. Journal of Biomedical Nanotechnology, 2014, 10, 355-365.	0.5	21
45	Crosstalk between kinases, phosphatases and miRNAs in cancer. Biochimie, 2014, 107, 167-187.	1.3	10
46	Calix[6]arene bypasses human pancreatic cancer aggressiveness: Downregulation of receptor tyrosine kinases and induction of cell death by reticulum stress and autophagy. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 2856-2865.	1.9	30
47	Microemulsion extrusion technique: a new method to produce lipid nanoparticles. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	19
48	Improvement of tetracaine antinociceptive effect by inclusion in cyclodextrins. Journal of Drug Targeting, 2012, 20, 85-96.	2.1	34
49	Non-inclusion complexes between riboflavin and cyclodextrins. Journal of Pharmacy and Pharmacology, 2012, 64, 832-842.	1.2	35
50	Computational analysis and physico-chemical characterization of an inclusion compound between praziquantel and methyl-β-cyclodextrin for use as an alternative in the treatment of schistosomiasis. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2011, 70, 19-28.	1.6	30
51	Design of solid lipid nanoparticles for gene delivery into prostate cancer. Journal of Controlled Release, 2010, 148, e89-e90.	4.8	16
52	Improvement of the oral praziquantel anthelmintic effect by cyclodextrin complexation. Journal of Drug Targeting, 2010, 18, 21-26.	2.1	13
53	Improvement of the oral praziquantel anthelmintic effect by cyclodextrin complexation. Journal of Drug Targeting, 2009, 00, 090722055016091-6.	2.1	0
54	Ferruginol suppresses survival signaling pathways in androgen-independent human prostate cancer cells. Biochimie, 2008, 90, 843-854.	1.3	50

#	Article	IF	CITATIONS
55	Stability and Local Toxicity Evaluation of a Liposomal Prilocaine Formulation. Journal of Liposome Research, 2008, 18, 329-339.	1.5	22
56	Theoretical and experimental study of a praziquantel and -cyclodextrin inclusion complex using molecular mechanic calculations and -nuclear magnetic resonance. Journal of Pharmaceutical and Biomedical Analysis, 2006, 41, 1428-1432.	1.4	37
57	Elucidation of inclusion compounds between β-cyclodextrin/local anaesthetics structure: a theoretical and experimental study using differential scanning calorimetry and molecular mechanics. Computational and Theoretical Chemistry, 2004, 678, 63-66.	1.5	23
58	Como estudar interações entre nanopartÃculas e sistemas biológicos. Quimica Nova, 0, , .	0.3	3
59	Nanostructured Lipid Carriers Loaded with 17-α-Estradiol Accumulate into Hair Follicles. Journal of the Brazilian Chemical Society, 0, , .	0.6	0