Jaume Pujol Ramo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7569682/publications.pdf

Version: 2024-02-01

		393982	360668
68	1,551	19	35
papers	1,551 citations	h-index	g-index
69	69	69	839
0,7	0,7	0,7	037
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Comparison of the Retinal Image Quality with a Hartmann-Shack Wavefront Sensor and a Double-Pass Instrument., 2006, 47, 1710.		195
2	An Objective Scatter Index Based on Double-Pass Retinal Images of a Point Source to Classify Cataracts. PLoS ONE, 2011, 6, e16823.	1.1	194
3	Optical Quality Analysis System. Journal of Cataract and Refractive Surgery, 2004, 30, 1598-1599.	0.7	110
4	Objective optical assessment of tear-film quality dynamics in normal and mildly symptomatic dry eyes. Journal of Cataract and Refractive Surgery, 2011, 37, 1481-1487.	0.7	100
5	Optical quality and intraocular scattering in a healthy young population. Australasian journal of optometry, The, 2011, 94, 223-229.	0.6	81
6	Intra- and Intersession Repeatability of a Double-Pass Instrument. Optometry and Vision Science, 2010, 87, 675-681.	0.6	57
7	Optical quality of foldable monofocal intraocular lenses before and after injection. Journal of Cataract and Refractive Surgery, 2009, 35, 1415-1423.	0.7	54
8	Optical Quality One Month After Verisyse and Veriflex Phakic IOL Implantation and Zeiss MEL 80 LASIK for Myopia From 5.00 to 16.50 Diopters. Journal of Refractive Surgery, 2009, 25, 689-698.	1.1	52
9	Grading nuclear, cortical and posterior subcapsular cataracts using an objective scatter index measured with a double-pass system. British Journal of Ophthalmology, 2012, 96, 1204-1210.	2.1	50
10	Optical quality after myopic photorefractive keratectomy and laser in situ keratomileusis: Comparison using a double-pass system. Journal of Cataract and Refractive Surgery, 2012, 38, 16-27.	0.7	43
11	Effects of aging on optical quality and visual function. Australasian journal of optometry, The, 2016, 99, 518-525.	0.6	41
12	Characterization of the human iris spectral reflectance with a multispectral imaging system. Applied Optics, 2008, 47, 5622.	2.1	31
13	Effect of laser in situ keratomileusis on vision analyzed using preoperative optical quality. Journal of Cataract and Refractive Surgery, 2010, 36, 1945-1953.	0.7	29
14	Curvature sensor for ocular wavefront measurement. Optics Letters, 2006, 31, 2245.	1.7	27
15	Double-pass technique and compensation-comparison method in eyes with cataract. Journal of Cataract and Refractive Surgery, 2016, 42, 1461-1469.	0.7	27
16	Influence of amount and changes in axis of astigmatism on retinal image quality. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1998, 15, 2514.	0.8	25
17	Optimized algorithm for the spatial nonuniformity correction of an imaging system based on a charge-coupled device color camera. Applied Optics, 2007, 46, 167.	2.1	22
18	Comparing Autorefractors for Measurement of Accommodation. Optometry and Vision Science, 2015, 92, 1003-1011.	0.6	22

#	Article	IF	CITATIONS
19	Concerning the calculation of the color gamut in a digital camera. Color Research and Application, 2006, 31, 399-410.	0.8	20
20	Multispectral system for reflectance reconstruction in the near-infrared region. Applied Optics, 2006, 45, 4241.	2.1	19
21	Task oriented visual satisfaction and wearing success with two different simultaneous vision multifocal soft contact lenses. Journal of Optometry, 2011, 4, 76-84.	0.7	19
22	Visual and instrumental assessments of color differences in automotive coatings. Color Research and Application, 2016, 41, 384-391.	0.8	19
23	Confocal Microscopy of Corneas With an Intracorneal Lens for Hyperopia. Journal of Refractive Surgery, 2004, 20, 778-782.	1.1	18
24	Repeatability of Aberrometric Measurements With a New Instrument for Vision Analysis Based on Adaptive Optics. Journal of Refractive Surgery, 2015, 31, 188-194.	1.1	18
25	Spherical subjective refraction with a novel 3D virtual reality based system. Journal of Optometry, 2017, 10, 43-51.	0.7	16
26	A device for the color measurement and detection of spots on the skin. Skin Research and Technology, 2007, 14, 070309091702006-???.	0.8	15
27	Comparison between an objective and a psychophysical method for the evaluation of intraocular light scattering. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2012, 29, 1293.	0.8	15
28	Ageâ€related changes in accommodation measured with a doubleâ€pass system. Ophthalmic and Physiological Optics, 2013, 33, 508-515.	1.0	13
29	Visual outcome of penetrating keratoplasty, deep anterior lamellar keratoplasty and Descemet membrane endothelial keratoplasty. Journal of Optometry, 2018, 11, 174-181.	0.7	13
30	An automated and objective cover test to measure heterophoria. PLoS ONE, 2018, 13, e0206674.	1.1	13
31	Characterization of a digital camera as an absolute tristimulus colorimeter. , 2003, , .		12
32	Clinical evaluation of an automated subjective refraction method implemented in a computer-controlled motorized phoropter. Journal of Optometry, 2019, 12, 74-83.	0.7	12
33	Robust eye tracking based on multiple corneal reflections for clinical applications. Journal of Biomedical Optics, 2018, 23, 1.	1.4	12
34	Discrimination between Surgical and Nonsurgical Nuclear Cataracts Based on ROC Analysis. Current Eye Research, 2014, 39, 1187-1193.	0.7	11
35	Portable multispectral imaging system based on light-emitting diodes for spectral recovery from 370 to 1630  nm. Applied Optics, 2014, 53, 3131.	0.9	11
36	Optical quality and intraocular scattering assessed with a double-pass system in eyes with contact lens induced corneal swelling. Contact Lens and Anterior Eye, 2014, 37, 278-284.	0.8	10

#	Article	IF	Citations
37	The minimum number of measurements for colour, sparkle, and graininess characterisation in gonio-apparent panels. Coloration Technology, 2015, 131, 303-309.	0.7	10
38	Does the Badal optometer stimulate accommodation accurately?. Ophthalmic and Physiological Optics, 2017, 37, 88-95.	1.0	9
39	Effect of Experimental Conditions in the Accommodation Response in Myopia. Optometry and Vision Science, 2017, 94, 1120-1128.	0.6	8
40	Whole anterior segment and retinal swept source OCT for comprehensive ocular screening. Biomedical Optics Express, 2021, 12, 1263.	1.5	8
41	Repeatability, reproducibility, and accuracy of a novel pushbroom hyperspectral system. Color Research and Application, 2014, 39, 549-558.	0.8	7
42	Iris color and texture: A comparative analysis of real irises, ocular prostheses, and colored contact lenses. Color Research and Application, 2011, 36, 373-382.	0.8	6
43	Comparison of the Adaptive Optics Vision Analyzer and the KR†W for measuring ocular wave aberrations. Australasian journal of optometry, The, 2017, 100, 26-32.	0.6	6
44	Random Changes of Accommodation Stimuli: An Automated Extension of the Flippers Accommodative Facility Test. Current Eye Research, 2018, 43, 788-795.	0.7	6
45	Non-cycloplegic spherical equivalent refraction in adults: comparison of the double-pass system, retinoscopy, subjective refraction and a table-mounted autorefractor. International Journal of Ophthalmology, 2013, 6, 618-25.	0.5	6
46	Binocular open-view system to perform estimations of aberrations and scattering in the human eye. Applied Optics, 2015, 54, 9504.	2.1	5
47	Effect of apparent depth cues on accommodation in a Badal optometer. Australasian journal of optometry, The, 2017, 100, 649-655.	0.6	5
48	Spectral LED-Based Tuneable Light Source for the Reconstruction of CIE Standard Illuminants. Lecture Notes in Computer Science, 2014, , 115-123.	1.0	5
49	Stray-light correction of in-water array spectroradiometers. Effects on underwater optical measurements. , 2008, , .		4
50	Luminance adaptation model for increasing the dynamic range of an imaging system based on a CCD camera. Optik, 2011, 122, 1367-1372.	1.4	4
51	Validation of a gonio-hyperspectral imaging system based on light-emitting diodes for the spectral and colorimetric analysis of automotive coatings. Applied Optics, 2017, 56, 7194.	0.9	4
52	Spectral-reflectance reconstruction in the near-infrared region by use of conventional charge-coupled-device camera measurements. Applied Optics, 2003, 42, 1788.	2.1	3
53	Response to the Letter to the Editor by Dr van den Berg. Australasian journal of optometry, The, 2011, 94, 393-395.	0.6	3
54	Technical improvements applied to a double-pass setup for performance and cost optimization. Optical Engineering, 2014, 53, 061710.	0.5	3

#	Article	IF	Citations
55	Assessment of multifocal contact lens over-refraction using an infrared, open-field autorefractor: A preliminary study. Contact Lens and Anterior Eye, 2015, 38, 322-326.	0.8	3
56	Artwork imaging from 370 to 1630 nm using a novel multispectral system based on lightâ€emitting diodes. Color Research and Application, 2015, 40, 398-407.	0.8	3
57	Quantification of forward scattering based on the analysis of doubleâ€pass images in the frequency domain. Acta Ophthalmologica, 2019, 97, e1019-e1026.	0.6	3
58	Stimulus Unpredictability in Time, Magnitude, and Direction on Accommodation. Optometry and Vision Science, 2019, 96, 424-433.	0.6	3
59	Use of Light-Emitting Diodes in Multispectral Systems Design: Variability of Spectral Power Distribution According to Angle and Time of Usage. Journal of Imaging Science and Technology, 2011, 55, 050501.	0.3	2
60	Texture Evaluation of Automotive Coatings by Means of a Gonio-Hyperspectral Imaging System Based on Light-Emitting Diodes. Coatings, 2020, 10, 320.	1.2	2
61	Method to reduce undesired multiple fundus scattering effects in double-pass systems. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2019, 36, 918.	0.8	2
62	Automatic multispectral ultraviolet, visible and near-infrared capturing system for the study of artwork. , $2011, \ldots$		1
63	Response for light scattered in the ocular fundus from double-pass and Hartmann–Shack estimations. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2016, 33, 2150.	0.8	1
64	Suitability of open-field autorefractors as pupillometers and instrument design effects. International Journal of Ophthalmology, 2017, 10, 567-572.	0.5	1
65	Tear film stability assessment by corneal reflex image degradation. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2019, 36, B110.	0.8	1
66	Implementation of the Frequency Scatter Index in Clinical Commercially Available Double-pass Systems. Current Eye Research, 2022, 47, 391-398.	0.7	1
67	NIR spectrophotometric system based on a conventional CCD camera. , 2003, , .		0
68	Optimization of a SS-OCT with a focus tunable lens for enhanced visualization of ocular opacities. , 2019, , .		0