Zhaoxiang Deng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7569462/publications.pdf

Version: 2024-02-01

236925 155660 3,735 56 25 55 citations h-index g-index papers 62 62 62 5517 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Sub-1.5 nm-gapped heterodimeric plasmonic nanomolecules. Chemical Science, 2022, 13, 4788-4793.	7.4	8
2	Decoupled Roles of DNA–Surfactant Interactions: Instant Charge Inversion, Enhanced Colloidal and Chemical Stabilities, and Fully Tunable DNA Conjugation of Shaped Plasmonic Nanocrystals. Nano Letters, 2022, 22, 3385-3391.	9.1	6
3	Evaporative Drying: A General and Readily Scalable Route to Spherical Nucleic Acids with Quantitative, Fully Tunable, and Recordâ€High DNA Loading. Small, 2022, 18, e2202458.	10.0	3
4	Flash Synthesis of Spherical Nucleic Acids with Record DNA Density. Journal of the American Chemical Society, 2021, 143, 3065-3069.	13.7	89
5	Solvo-Driven Dimeric Nanoplasmon Coupling Under DNA Direction. CCS Chemistry, 2021, 3, 1359-1367.	7.8	6
6	Preparation of a Ti _{0.7} W _{0.3} O ₂ /TiO ₂ nanocomposite interfacial photocatalyst and its photocatalytic degradation of phenol pollutants in wastewater. Nanoscale Advances, 2020, 2, 425-437.	4.6	1
7	Tunable Charge Transfer Plasmon at Gold/Copper Heterointerface. Acta Chimica Sinica, 2020, 78, 675.	1.4	9
8	Frontispiece: Stimuliâ∈Responsive DNA Selfâ∈Assembly: From Principles to Applications. Chemistry - A European Journal, 2019, 25, .	3.3	0
9	Chemically modified nanofoci unifying plasmonics and catalysis. Chemical Science, 2019, 10, 5929-5934.	7.4	13
10	Baseâ€Sequenceâ€Independent Efficient Redox Switching of Selfâ€Assembled DNA Nanocages. ChemBioChem, 2019, 20, 2743-2746.	2.6	4
11	Stimuliâ€Responsive DNA Selfâ€Assembly: From Principles to Applications. Chemistry - A European Journal, 2019, 25, 9785-9798.	3.3	22
12	Ag Ion Soldering: An Emerging Tool for Sub-nanomeric Plasmon Coupling and Beyond. Accounts of Chemical Research, 2019, 52, 3442-3454.	15.6	16
13	Ultrasensitive and Stable Au Dimerâ€Based Colorimetric Sensors Using the Dynamically Tunable Gapâ€Dependent Plasmonic Coupling Optical Properties. Advanced Functional Materials, 2018, 28, 1707392.	14.9	48
14	Universal pHâ€Responsive and Metalâ€Ionâ€Free Selfâ€Assembly of DNA Nanostructures. Angewandte Chemie - International Edition, 2018, 57, 6892-6895.	13.8	44
15	Freeze the Moment: High Speed Capturing of Weakly Bonded Dynamic Nanoparticle Assemblies in Solution by Ag Ion Soldering. Small, 2018, 14, 1703303.	10.0	7
16	Nanosecond-Laser-Based Charge Transfer Plasmon Engineering of Solution-Assembled Nanodimers. Nano Letters, 2018, 18, 7014-7020.	9.1	21
17	Universal pHâ€Responsive and Metalâ€Ionâ€Free Selfâ€Assembly of DNA Nanostructures. Angewandte Chemie, 2018, 130, 7008-7011.	2.0	10
18	Protein-sheathed SWNT as a versatile scaffold for nanoparticle assembly and superstructured nanowires. Science China Chemistry, 2018, 61, 1128-1133.	8.2	3

#	Article	IF	Citations
19	Supramolecular Wireframe <scp>DNA</scp> Polyhedra: Assembly and Applications. Chinese Journal of Chemistry, 2017, 35, 801-810.	4.9	8
20	Amplification of arsenic genotoxicity by TiO ₂ nanoparticles in mammalian cells: new insights from physicochemical interactions and mitochondria. Nanotoxicology, 2017, 11, 978-995.	3.0	23
21	Valency Control and Functional Synergy in DNAâ€Bonded Nanomolecules. ChemNanoMat, 2017, 3, 698-712.	2.8	18
22	Pt supraparticles with controllable DNA valences for programmed nanoassembly. Chemical Communications, 2017, 53, 9773-9776.	4.1	10
23	Uncoordinated Amine Groups of Metal–Organic Frameworks to Anchor Single Ru Sites as Chemoselective Catalysts toward the Hydrogenation of Quinoline. Journal of the American Chemical Society, 2017, 139, 9419-9422.	13.7	558
24	"Flash―preparation of strongly coupled metal nanoparticle clusters with sub-nm gaps by Ag ⁺ soldering: toward effective plasmonic tuning of solution-assembled nanomaterials. Chemical Science, 2016, 7, 5435-5440.	7.4	33
25	Dry Sintering Meets Wet Silverâ€lon "Soldering― Chargeâ€Transfer Plasmon Engineering of Solutionâ€Assembled Gold Nanodimers From Visible to Nearâ€Infraredâ€I and Ilâ€Regions. Angewandte Cher International Edition, 2016, 55, 14296-14300.	ni ∉ 3.8	34
26	Dry Sintering Meets Wet Silverâ€lon "Soldering― Chargeâ€Transfer Plasmon Engineering of Solutionâ€Assembled Gold Nanodimers From Visible to Nearâ€Infraredâ€I and Ilâ€Regions. Angewandte Cher 2016, 128, 14508-14512.	ni e, 0	12
27	Graphene Oxide Attenuates the Cytotoxicity and Mutagenicity of PCB 52 via Activation of Genuine Autophagy. Environmental Science & Eamp; Technology, 2016, 50, 3154-3164.	10.0	48
28	Overcoming the Coupling Dilemma in DNAâ€Programmable Nanoparticle Assemblies by "Ag ⁺ Soldering― Small, 2015, 11, 2247-2251.	10.0	36
29	Hydrogel-derived non-precious electrocatalysts for efficient oxygen reduction. Scientific Reports, 2015, 5, 11739.	3.3	22
30	Chemoresponsive Colloidosomes via Ag ⁺ Soldering of Surface-Assembled Nanoparticle Monolayers. Langmuir, 2015, 31, 4589-4592.	3.5	14
31	Core solution: a strategy towards gold core/non-gold shell nanoparticles bearing strict DNA-valences for programmable nanoassembly. Chemical Science, 2014, 5, 1015-1020.	7.4	18
32	One at a time: counting single-nanoparticle/electrode collisions for accurate particle sizing by overcoming the instability of gold nanoparticles under electrolytic conditions. Nanotechnology, 2013, 24, 505707.	2.6	26
33	DNA-Directed Assembly of Nanophase Materials: An Updated Review. , 2013, , 157-183.		2
34	Pt nanoparticles decorated with a discrete number of DNA molecules for programmable assembly of Au $\hat{a} \in \text{Pt}$ bimetallic superstructures. Chemical Communications, 2012, 48, 3727.	4.1	27
35	Silver nanoparticle–DNA bionanoconjugates bearing a discrete number of DNA ligands. Chemical Communications, 2012, 48, 6160.	4.1	50
36	Logical Regulations of the Aggregation/Dispersion of Gold Nanoparticles via Programmed Chemical Interactions. Langmuir, 2011, 27, 9666-9670.	3.5	8

#	Article	IF	Citations
37	Probing DNA's Interstrand Orientation with Gold Nanoparticles. Analytical Chemistry, 2011, 83, 5067-5072.	6.5	8
38	Surface-initiated DNA self-assembly as an enzyme-free and nanoparticle-free strategy towards signal amplification of an electrochemical DNA sensor. Analyst, The, 2011, 136, 459-462.	3.5	7
39	Eggshell membrane as a multimodal solid state platform for generating fluorescent metal nanoclusters. Journal of Materials Chemistry, 2011, 21, 2863.	6.7	72
40	DNA-SWNT hybrid hydrogel. Chemical Communications, 2011, 47, 5545-5547.	4.1	81
41	Nanostructures and Nanomaterials via DNA-Based Self-Assembly. , 2011, , 13-48.		2
42	Toward a Universal "Adhesive Nanosheet―for the Assembly of Multiple Nanoparticles Based on a Protein-Induced Reduction/Decoration of Graphene Oxide. Journal of the American Chemical Society, 2010, 132, 7279-7281.	13.7	794
43	Noncovalent DNA decorations of graphene oxide and reduced graphene oxide toward water-soluble metal–carbon hybrid nanostructuresviaself-assembly. Journal of Materials Chemistry, 2010, 20, 900-906.	6.7	167
44	DNA-assisted electroless deposition of highly dispersed palladium nanoparticles on glassy carbon surface: Preparation and electrocatalytic properties. Journal of Electroanalytical Chemistry, 2009, 629, 15-22.	3.8	16
45	A General Strategy Toward pHâ€Controlled Aggregation–Dispersion of Gold Nanoparticles and Singleâ€Walled Carbon Nanotubes. Small, 2008, 4, 326-329.	10.0	38
46	Catch and Release: DNA Tweezers that Can Capture, Hold, and Release an Object under Control. Journal of the American Chemical Society, 2008, 130, 14414-14415.	13.7	70
47	Grafting Singleâ€Walled Carbon Nanotubes with Highly Hybridizable DNA Sequences: Potential Building Blocks for DNAâ€Programmed Material Assembly. Angewandte Chemie - International Edition, 2007, 46, 7481-7484.	13.8	39
48	Electrical conduction in 7 nm wires constructed on λ-DNA. Nanotechnology, 2006, 17, 2752-2757.	2.6	43
49	DNA as Nanoscale Building Blocks. Journal of Nanoscience and Nanotechnology, 2005, 5, 1954-1963.	0.9	30
50	DNA-Encoded Self-Assembly of Gold Nanoparticles into One-Dimensional Arrays. Angewandte Chemie - International Edition, 2005, 44, 3582-3585.	13.8	271
51	Tensegrity:Â Construction of Rigid DNA Triangles with Flexible Four-Arm DNA Junctions. Journal of the American Chemical Society, 2004, 126, 2324-2325.	13.7	346
52	Molecular Lithography with DNA Nanostructures. Angewandte Chemie - International Edition, 2004, 43, 4068-4070.	13.8	94
53	Cover Picture: Molecular Lithography with DNA Nanostructures (Angew. Chem. Int. Ed. 31/2004). Angewandte Chemie - International Edition, 2004, 43, 3983-3983.	13.8	0
54	Two-Dimensional Hexagonally Oriented CdCl2·H2O Nanorod Assembly: Formation and Replication. Langmuir, 2004, 20, 8078-8082.	3.5	12

ZHAOXIANG DENG

#	Article	IF	CITATIONS
55	DNA-Templated Fabrication of 1D Parallel and 2D Crossed Metallic Nanowire Arrays. Nano Letters, 2003, 3, 1545-1548.	9.1	248
56	DNA networks as templates for bottom-up assembly of metal nanowires. , 0, , .		3