
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7569147/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantitative Trait Locus (QTL) Mapping Using Different Testers and Independent Population Samples in Maize Reveals Low Power of QTL Detection and Large Bias in Estimates of QTL Effects. Genetics, 1998, 149, 383-403.	1.2	462
2	Effectiveness of Genomic Prediction of Maize Hybrid Performance in Different Breeding Populations and Environments. G3: Genes, Genomes, Genetics, 2012, 2, 1427-1436.	0.8	242
3	Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers. Theoretical and Applied Genetics, 2010, 120, 1289-1299.	1.8	232
4	Genome Properties and Prospects of Genomic Prediction of Hybrid Performance in a Breeding Program of Maize. Genetics, 2014, 197, 1343-1355.	1.2	192
5	Genomic Predictability of Interconnected Biparental Maize Populations. Genetics, 2013, 194, 493-503.	1.2	180
6	Linkage disequilibrium in European elite maize germplasm investigated with SSRs. Theoretical and Applied Genetics, 2005, 111, 723-730.	1.8	167
7	Genomic prediction of hybrid performance in maize with models incorporating dominance and population specific marker effects. Theoretical and Applied Genetics, 2012, 125, 1181-1194.	1.8	143
8	New Insights into the Genetics of <i>in Vivo</i> Induction of Maternal Haploids, the Backbone of Doubled Haploid Technology in Maize. Genetics, 2012, 190, 781-793.	1.2	143
9	Beyond Genomic Prediction: Combining Different Types of <i>omics</i> Data Can Improve Prediction of Hybrid Performance in Maize. Genetics, 2018, 208, 1373-1385.	1.2	130
10	Relationships among Early European Maize Inbreds: II. Comparison of Pedigree and RFLP Data. Crop Science, 1993, 33, 944-950.	0.8	127
11	Doubled haploid technology for line development in maize: technical advances and prospects. Theoretical and Applied Genetics, 2019, 132, 3227-3243.	1.8	126
12	Usefulness of Multiparental Populations of Maize (<i>Zea mays</i> L.) for Genome-Based Prediction. Genetics, 2014, 198, 3-16.	1.2	114
13	Gametophytic and zygotic selection leads to segregation distortion through in vivo induction of a maternal haploid in maize. Journal of Experimental Botany, 2013, 64, 1083-1096.	2.4	107
14	Genetic structure and diversity of European flint maize populations determined with SSR analyses of individuals and bulks. Theoretical and Applied Genetics, 2005, 111, 906-913.	1.8	96
15	Rapid and accurate identification of in vivo-induced haploid seeds based on oil content in maize. Scientific Reports, 2013, 3, 2129.	1.6	95
16	Doubled Haploids in Tropical Maize: I. Effects of Inducers and Source Germplasm on in vivo Haploid Induction Rates. Crop Science, 2011, 51, 1498-1506.	0.8	94
17	Trends in genetic diversity among European maize cultivars and their parental components during the past 50Âyears. Theoretical and Applied Genetics, 2005, 111, 838-845.	1.8	93
18	Omics-based hybrid prediction in maize. Theoretical and Applied Genetics, 2017, 130, 1927-1939.	1.8	90

#	Article	IF	CITATIONS
19	Comparison of whole-genome prediction models for traits with contrasting genetic architecture in a diversity panel of maize inbred lines. BMC Genomics, 2012, 13, 452.	1.2	74
20	Optimizing the allocation of resources for genomic selection in one breeding cycle. Theoretical and Applied Genetics, 2013, 126, 2835-2848.	1.8	74
21	Relationships among Early European Maize Inbreds: I. Genetic Diversity among Flint and Dent Lines Revealed by RFLPs. Crop Science, 1992, 32, 1301-1309.	0.8	73
22	No Evidence for Epistasis in Hybrid and Per Se Performance of Elite European Flint Maize Inbreds from Generation Means and QTL Analyses. Crop Science, 2005, 45, 2605-2613.	0.8	69
23	Production of Haploids and Doubled Haploids in Maize. Methods in Molecular Biology, 2012, 877, 161-172.	0.4	69
24	Optimum breeding strategies using genomic selection for hybrid breeding in wheat, maize, rye, barley, rice and triticale. Theoretical and Applied Genetics, 2016, 129, 1901-1913.	1.8	69
25	Unlocking the Genetic Diversity of Maize Landraces with Doubled Haploids Opens New Avenues for Breeding. PLoS ONE, 2013, 8, e57234.	1.1	68
26	QTL Mapping in Testcrosses of European Flint Lines of Maize: II. Comparison of Different Testers for Forage Quality Traits. Crop Science, 1997, 37, 1913-1922.	0.8	66
27	Markerâ€Assisted Backcrossing for Simultaneous Introgression of Two Genes. Crop Science, 2001, 41, 1716-1725.	0.8	61
28	Haploid Fertility in Temperate and Tropical Maize Germplasm. Crop Science, 2012, 52, 623-630.	0.8	61
29	The Genetic Basis of Haploid Induction in Maize Identified with a Novel Genome-Wide Association Method. Genetics, 2016, 202, 1267-1276.	1.2	61
30	Effect of source germplasm and season on the in vivo haploid induction rate in tropical maize. Euphytica, 2011, 180, 219-226.	0.6	59
31	In Vivo Haploid Induction in Maize: Identification of Haploid Seeds by Their Oil Content. Crop Science, 2014, 54, 1497-1504.	0.8	59
32	Development of in vivo haploid inducers for tropical maize breeding programs. Euphytica, 2012, 185, 481-490.	0.6	52
33	Fine mapping of qhir8 affecting in vivo haploid induction in maize. Theoretical and Applied Genetics, 2015, 128, 2507-2515.	1.8	52
34	Accuracy of Genomic Prediction in Synthetic Populations Depending on the Number of Parents, Relatedness, and Ancestral Linkage Disequilibrium. Genetics, 2017, 205, 441-454.	1.2	52
35	European maize landraces made accessible for plant breeding and genome-based studies. Theoretical and Applied Genetics, 2019, 132, 3333-3345.	1.8	52
36	Development and Validation of Red Root Markerâ€Based Haploid Inducers in Maize. Crop Science, 2016, 56, 1678-1688.	0.8	50

#	Article	IF	CITATIONS
37	Colchicine Alternatives for Chromosome Doubling in Maize Haploids for Doubledâ€Haploid Production. Crop Science, 2016, 56, 559-569.	0.8	47
38	Tapping the genetic diversity of landraces in allogamous crops with doubled haploid lines: a case study from European flint maize. Theoretical and Applied Genetics, 2017, 130, 861-873.	1.8	41
39	Marker-Assisted Breeding of Improved Maternal Haploid Inducers in Maize for the Tropical/Subtropical Regions. Frontiers in Plant Science, 2018, 9, 1527.	1.7	41
40	Genomic Prediction Within and Across Biparental Families: Means and Variances of Prediction Accuracy and Usefulness of Deterministic Equations. G3: Genes, Genomes, Genetics, 2017, 7, 3571-3586.	0.8	34
41	Genomic prediction and GWAS of Gibberella ear rot resistance traits in dent and flint lines of a public maize breeding program. Euphytica, 2018, 214, 1.	0.6	32
42	Testcross performance of doubled haploid lines from European flint maize landraces is promising for broadening the genetic base of elite germplasm. Theoretical and Applied Genetics, 2019, 132, 1897-1908.	1.8	28
43	Hybrid maize breeding with doubled haploids: III. Efficiency of early testing prior to doubled haploid production in two-stage selection for testcross performance. Theoretical and Applied Genetics, 2007, 115, 519-527.	1.8	27
44	Breeding Potential of European Flint Maize Landraces Evaluated by their Testcross Performance. Crop Science, 2014, 54, 1665-1672.	0.8	25
45	Breeding maize as biogas substrate in Central Europe: II. Quantitative-genetic parameters for inbred lines and correlations with testcross performance. Theoretical and Applied Genetics, 2012, 124, 981-988.	1.8	24
46	Safeguarding Our Genetic Resources with Libraries of Doubled-Haploid Lines. Genetics, 2017, 206, 1611-1619.	1.2	24
47	Oil Content is Superior to Oil Mass for Identification of Haploid Seeds in Maize Produced with Highâ€Oil Inducers. Crop Science, 2015, 55, 188-195.	0.8	23
48	Genomic selection in biparental populations: assessment of parameters for optimum estimation set design. Plant Breeding, 2015, 134, 623-630.	1.0	22
49	Transcriptomeâ€based prediction of hybrid performance with unbalanced data from a maize breeding programme. Plant Breeding, 2017, 136, 331-337.	1.0	22
50	Highâ€Throughput Precision Phenotyping of the Oil Content of Single Seeds of Various Oilseed Crops. Crop Science, 2018, 58, 670-678.	0.8	22
51	Genomic prediction with multiple biparental families. Theoretical and Applied Genetics, 2020, 133, 133-147.	1.8	22
52	High-throughput platform for automated sorting and selection of single seeds based on time-domain nuclear magnetic resonance (TD-NMR) measurement of oil content. Biosystems Engineering, 2017, 164, 213-220.	1.9	21
53	Dissection of a major QTL qhir1 conferring maternal haploid induction ability in maize. Theoretical and Applied Genetics, 2017, 130, 1113-1122.	1.8	20
54	Genomic Prediction Within and Among Doubled-Haploid Libraries from Maize Landraces. Genetics, 2018, 210, 1185-1196.	1.2	18

#	Article	IF	CITATIONS
55	Exploiting genetic diversity in two European maize landraces for improving Gibberella ear rot resistance using genomic tools. Theoretical and Applied Genetics, 2021, 134, 793-805.	1.8	18
56	Determination of Methane Fermentation Yield and its Kinetics by near Infrared Spectroscopy and Chemical Composition in Maize. Journal of Near Infrared Spectroscopy, 2011, 19, 463-477.	0.8	17
57	Nitrous Oxideâ€Induced Chromosome Doubling of Maize Haploids. Crop Science, 2018, 58, 650-659.	0.8	17
58	Haploid male fertility and spontaneous chromosome doubling evaluated in a diallel and recurrent selection experiment in maize. Theoretical and Applied Genetics, 2019, 132, 2273-2284.	1.8	17
59	In Vivo Haploid Induction in Maize: Comparison of Different Testing Regimes for Measuring Haploid Induction Rates. Crop Science, 2016, 56, 1127-1135.	0.8	15
60	Early diagnosis of ploidy status in doubled haploid production of maize by stomata length and flow cytometry measurements. Plant Breeding, 2019, 138, 266-276.	1.0	13
61	Doubled haploids in tropical maize: II. Quantitative genetic parameters for testcross performance. Euphytica, 2012, 185, 453-463.	0.6	10
62	Controlling Misclassification Rates in Identification of Haploid Seeds from Induction Crosses in Maize with High-Oil Inducers. Crop Science, 2015, 55, 1076-1086.	0.8	10
63	Progress for testcross performance within the flint heterotic pool of a public maize breeding program since the onset of hybrid breeding. Euphytica, 2019, 215, 1.	0.6	9
64	Unraveling the potential of phenomic selection within and among diverse breeding material of maize (<i>Zea mays</i> L.). G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	9
65	Efficient genetic value prediction using incomplete omics data. Theoretical and Applied Genetics, 2019, 132, 1211-1222.	1.8	8
66	Variation and covariation for Gibberella ear rot resistance and agronomic traits in testcrosses of doubled haploid maize lines. Euphytica, 2012, 185, 441-451.	0.6	7
67	Production of doubled haploid lines for hybrid breeding in maize. Burleigh Dodds Series in Agricultural Science, 2019, , 143-172.	0.1	7
68	High-resolution association mapping with libraries of immortalized lines from ancestral landraces. Theoretical and Applied Genetics, 2022, 135, 243-256.	1.8	5
69	Theoretical and experimental assessment of genome-based prediction in landraces of allogamous crops. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2121797119.	3.3	4