Chun-Hui He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7568981/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TAYLOR SERIES SOLUTION FOR FRACTAL BRATU-TYPE EQUATION ARISING IN ELECTROSPINNING PROCESS. Fractals, 2020, 28, 2050011.	3.7	129
2	Solitary waves travelling along an unsmooth boundary. Results in Physics, 2021, 24, 104104.	4.1	98
3	FRACTAL N/MEMS: FROM PULL-IN INSTABILITY TO PULL-IN STABILITY. Fractals, 2021, 29, 2150030.	3.7	90
4	PHYSICAL INSIGHT OF LOCAL FRACTIONAL CALCULUS AND ITS APPLICATION TO FRACTIONAL KDV–BURGERS–KURAMOTO EQUATION. Fractals, 2019, 27, 1950122.	3.7	85
5	A REMARK ON WANG'S FRACTAL VARIATIONAL PRINCIPLE. Fractals, 2019, 27, 1950134.	3.7	80
6	A fractal Boussinesq equation for nonlinear transverse vibration of a nanofiber-reinforced concrete pillar. Applied Mathematical Modelling, 2020, 82, 437-448.	4.2	74
7	LOW FREQUENCY PROPERTY OF A FRACTAL VIBRATION MODEL FOR A CONCRETE BEAM. Fractals, 2021, 29, 2150117.	3.7	74
8	Hybrid rayleigh–van der pol–duffing oscillator: Stability analysis and controller. Journal of Low Frequency Noise Vibration and Active Control, 2022, 41, 244-268.	2.9	71
9	FRACTAL OSCILLATION AND ITS FREQUENCY-AMPLITUDE PROPERTY. Fractals, 2021, 29, 2150105.	3.7	70
10	TWO-SCALE FRACTAL THEORY FOR THE POPULATION DYNAMICS. Fractals, 2021, 29, .	3.7	70
11	A fractal modification of the surface coverage model for an electrochemical arsenic sensor. Electrochimica Acta, 2019, 296, 491-493.	5.2	68
12	Homotopy perturbation method coupled with the enhanced perturbation method. Journal of Low Frequency Noise Vibration and Active Control, 2019, 38, 1399-1403.	2.9	67
13	A heuristic review on the homotopy perturbation method for non-conservative oscillators. Journal of Low Frequency Noise Vibration and Active Control, 2022, 41, 572-603.	2.9	66
14	Controlling the kinematics of a spring-pendulum system using an energy harvesting device. Journal of Low Frequency Noise Vibration and Active Control, 2022, 41, 1234-1257.	2.9	66
15	A Simple Frequency Formulation for the Tangent Oscillator. Axioms, 2021, 10, 320.	1.9	61
16	On a strong minimum condition of a fractal variational principle. Applied Mathematics Letters, 2021, 119, 107199.	2.7	57
17	A MODIFIED FREQUENCY–AMPLITUDE FORMULATION FOR FRACTAL VIBRATION SYSTEMS. Fractals, 2022, 30,	3.7	57
18	A fractal micro-electromechanical system and its pull-in stability. Journal of Low Frequency Noise Vibration and Active Control, 2021, 40, 1380-1386.	2.9	53

Сним-Ниі Не

#	Article	IF	CITATIONS
19	An introduction to an ancient Chinese algorithm and its modification. International Journal of Numerical Methods for Heat and Fluid Flow, 2016, 26, 2486-2491.	2.8	44
20	<i>Fangzhu</i> (α -1 e^-): An ancient Chinese nanotechnology for water collection from air: History, mathematical insight, promises, and challenges. Mathematical Methods in the Applied Sciences, 0, , .	2.3	40
21	A variational principle for a fractal nano/microelectromechanical (N/MEMS) system. International Journal of Numerical Methods for Heat and Fluid Flow, 2023, 33, 351-359.	2.8	37
22	PASSIVE ATMOSPHERIC WATER HARVESTING UTILIZING AN ANCIENT CHINESE INK SLAB. Facta Universitatis, Series: Mechanical Engineering, 2021, 19, 229.	4.6	35
23	Macromolecule Orientation in Nanofibers. Nanomaterials, 2018, 8, 918.	4.1	33
24	A novel bond stress-slip model for 3-D printed concretes. Discrete and Continuous Dynamical Systems - Series S, 2022, 15, 1669.	1.1	25
25	Evans model for dynamic economics revised. AIMS Mathematics, 2021, 6, 9194-9206.	1.6	24
26	Fractal Pull-in Stability Theory for Microelectromechanical Systems. Frontiers in Physics, 2021, 9, .	2.1	24
27	Study on the rheology and buildability of 3D printed concrete with recycled coarse aggregates. Journal of Building Engineering, 2021, 42, 103030.	3.4	21
28	Fast identification of the pull-in voltage of a nano/micro-electromechanical system. Journal of Low Frequency Noise Vibration and Active Control, 2022, 41, 566-571.	2.9	21
29	An analysis of time-fractional heat transfer problem using two-scale approach. GEM - International Journal on Geomathematics, 2021, 12, 1.	1.6	18
30	Bubbfil spinning for fabrication of PVA nanofibers. Thermal Science, 2015, 19, 743-746.	1.1	17
31	Graphene-Contacted Single Molecular Junctions with Conjugated Molecular Wires. ACS Applied Nano Materials, 2019, 2, 12-18.	5.0	16
32	Symmetry Effects on Attenuation Factors in Graphene-Based Molecular Junctions. Journal of Physical Chemistry Letters, 2017, 8, 5987-5992.	4.6	15
33	Dynamic pull-in and oscillations of current-carrying filaments in magnetic micro-electro-mechanical system. Communications in Nonlinear Science and Numerical Simulation, 2022, 109, 106350.	3.3	14
34	A short remark on Kalaawy's variational principle for plasma. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27, 2203-2206.	2.8	13
35	Facile preparation of α-Fe2O3 nanobulk via bubble electrospinning and thermal treatment. Thermal Science, 2016, 20, 967-972.	1.1	12
36	A complement to period/frequency estimation of a nonlinear oscillator. Journal of Low Frequency Noise Vibration and Active Control, 2019, 38, 992-995.	2.9	11

Сним-Ниї Не

#	Article	IF	CITATIONS
37	A simple analytical approach to a nonlinear equation arising in porous catalyst. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27, 861-866.	2.8	10
38	Effect of Asymmetric Anchoring Groups on Electronic Transport in Hybrid Metal/Molecule/Graphene Single Molecule Junctions. ChemPhysChem, 2019, 20, 1830-1836.	2.1	10
39	Carbon-contacted single molecule electrical junctions. Physical Chemistry Chemical Physics, 2018, 20, 24553-24560.	2.8	9
40	Application of an ancient Chinese algorithm to stab performance of woven fabrics. Thermal Science, 2016, 20, 819-822.	1.1	7
41	A short remark on the solution of Rachford-Rice equation. Thermal Science, 2018, 22, 1849-1852.	1.1	7
42	Fabrication of Beltlike Fibers by Electrospinning. Polymers, 2018, 10, 1087.	4.5	6
43	Charge transport in hybrid platinum/molecule/graphene single molecule junctions. Physical Chemistry Chemical Physics, 2020, 22, 13498-13504.	2.8	6
44	A mathematical model for the formation of beaded fibers in electrospinning. Thermal Science, 2015, 19, 1151-1154.	1.1	6
45	Effect of pore size on gas resistance of nanofiber membrane by the bubble electrospinning. Thermal Science, 2015, 19, 1349-1351.	1.1	6
46	Microstructure and property of regenepercentaged silk fibroin/chitosan nanofibers. Thermal Science, 2016, 20, 979-983.	1.1	5
47	Nano-dyeing. Thermal Science, 2016, 20, 1003-1005.	1.1	4
48	From Inner Topological Structure to Functional Nanofibers: Theoretical Analysis and Experimental Verification. Membranes, 2021, 11, 870.	3.0	4
49	Chemical reaction and radiation on boundary-layer flow of electrically conduction micropolar fluid through a porous shrinking sheet. Thermal Science, 2022, 26, 2593-2598.	1.1	4
50	Double trials method for nonlinear problems arising in heat transfer. Thermal Science, 2011, 15, 153-155.	1.1	3
51	Effect of concentration of metal inorganic salt on fiber diameter in electrospinning process: Mathematical model and experimental verification. Thermal Science, 2018, 22, 2565-2570.	1.1	3
52	Electricity from nanomembrane. Thermal Science, 2014, 18, 1720-1721.	1.1	2
53	Effect of direction of blowing air on morphology of nanofibers by bubbfil spinning. Thermal Science, 2016, 20, 1016-1017.	1.1	2
54	Oligothiophene molecular wires at graphene-based molecular junctions. Physical Chemistry Chemical Physics, 2021, 23, 21163-21171.	2.8	1

#	Article	IF	CITATIONS
55	Effect of MWCNT on the Structure and Property of Nanofibrous Bundles by Blown Bubble Spinning. Recent Patents on Nanotechnology, 2020, 13, 171-180.	1.3	1
56	Macromolecule's Orientation in a Nanofiber by Bubble Electrospinning. Fluid Dynamics and Materials Processing, 2021, 17, 711-720.	0.7	0