Michael C Haffner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7568562/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Elevated expression of the colony-stimulating factor 1 (CSF1) induces prostatic intraepithelial neoplasia dependent of epithelial-Gp130. Oncogene, 2022, , .	2.6	6
2	Whole Genome Sequencing Reveals Independent Clonal Origin of Bilateral Testicular Germ Cell Tumors in Two Patients with Pure Seminoma. Urology, 2022, , .	0.5	0
3	Starving lethal prostate cancer by targeting heat shock proteins and glycolytic enzymes. Cell Reports Medicine, 2022, 3, 100493.	3.3	3
4	SEEMLIS: a flexible semi-automated method for enrichment of methylated DNA from low-input samples. Clinical Epigenetics, 2022, 14, 37.	1.8	3
5	Comprehensive Assessment of Anaplastic Lymphoma Kinase in Localized and Metastatic Prostate Cancer Reveals Targetable Alterations. Cancer Research Communications, 2022, 2, 277-285.	0.7	4
6	Identifying Phased Mutations and Complex Rearrangements in Human Prostate Cancer Cell Lines through Linked-Read Whole-Genome Sequencing. Molecular Cancer Research, 2022, 20, 1013-1020.	1.5	3
7	Therapeutic Implications for Intrinsic Phenotype Classification of Metastatic Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2022, 28, 3127-3140.	3.2	11
8	Assessment of Androgen Receptor Splice Variant-7 as a Biomarker of Clinical Response in Castration-Sensitive Prostate Cancer. Clinical Cancer Research, 2022, 28, 3509-3525.	3.2	11
9	Regulation of CEACAM5 and Therapeutic Efficacy of an Anti-CEACAM5–SN38 Antibody–drug Conjugate in Neuroendocrine Prostate Cancer. Clinical Cancer Research, 2021, 27, 759-774.	3.2	34
10	Genomic and phenotypic heterogeneity in prostate cancer. Nature Reviews Urology, 2021, 18, 79-92.	1.9	215
11	Epigenetic and transcriptional analysis reveals a core transcriptional program conserved in clonal prostate cancer metastases. Molecular Oncology, 2021, 15, 1942-1955.	2.1	10
12	Resistance to androgen receptor signaling inhibition does not necessitate development of neuroendocrine prostate cancer. JCl Insight, 2021, 6, .	2.3	22
13	Downregulation of 5â€hydroxymethylcytosine is an early event in pancreatic tumorigenesis. Journal of Pathology, 2021, 254, 279-288.	2.1	12
14	TGM4: an immunogenic prostate-restricted antigen. , 2021, 9, e001649.		11
15	RNA Splicing Factors SRRM3 and SRRM4 Distinguish Molecular Phenotypes of Castration-Resistant Neuroendocrine Prostate Cancer. Cancer Research, 2021, 81, 4736-4750.	0.4	18
16	Castration-mediated IL-8 promotes myeloid infiltration and prostate cancer progression. Nature Cancer, 2021, 2, 803-818.	5.7	54
17	Phenotypic characterization of two novel cell line models of castrationâ€resistant prostate cancer. Prostate, 2021, 81, 1159-1171.	1.2	9
18	Oncogenic gene fusions in nonneoplastic precursors as evidence that bacterial infection can initiate prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	18

MICHAEL C HAFFNER

#	Article	IF	CITATIONS
19	Molecular Pathology of Prostate Cancer. Surgical Pathology Clinics, 2021, 14, 387-401.	0.7	9
20	Divining Harm-Benefit Tradeoffs of Magnetic Resonance Imaging-targeted Biopsy. European Urology, 2021, 80, 573-574.	0.9	1
21	Reciprocal <scp>YAP1</scp> loss and <scp>INSM1</scp> expression in neuroendocrine prostate cancer. Journal of Pathology, 2021, 255, 425-437.	2.1	12
22	Subtype heterogeneity and epigenetic convergence in neuroendocrine prostate cancer. Nature Communications, 2021, 12, 5775.	5.8	59
23	Dickkopf-1 Can Lead to Immune Evasion in Metastatic Castration-Resistant Prostate Cancer. JCO Precision Oncology, 2020, 4, 1167-1179.	1.5	28
24	Putative Autoantigen Leiomodin-1 Is Expressed in the Human Brain and in the Membrane Fraction of Newly Formed Neurons. Pathogens, 2020, 9, 1036.	1.2	11
25	Pervasive promoter hypermethylation of silenced TERT alleles in human cancers. Cellular Oncology (Dordrecht), 2020, 43, 847-861.	2.1	14
26	A Comprehensive Analysis of FUT8 Overexpressing Prostate Cancer Cells Reveals the Role of EGFR in Castration Resistance. Cancers, 2020, 12, 468.	1.7	25
27	Gleason pattern 4 with cribriform morphology on biopsy is associated with adverse clinicopathological findings in a prospective radical prostatectomy cohort. Human Pathology, 2020, 98, 74-80.	1.1	21
28	An in Situ Atlas of Mitochondrial DNA in Mammalian Tissues Reveals High Content in StemÂand Proliferative Compartments. American Journal of Pathology, 2020, 190, 1565-1579.	1.9	21
29	Telomere lengths differ significantly between small-cell neuroendocrine prostate carcinoma and adenocarcinoma of the prostate. Human Pathology, 2020, 101, 70-79.	1.1	5
30	Molecular Pathology of High-Grade Prostatic Intraepithelial Neoplasia: Challenges and Opportunities. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a030403.	2.9	25
31	Functional Loss of <i>ATRX</i> and <i>TERC</i> Activates Alternative Lengthening of Telomeres (ALT) in LAPC4 Prostate Cancer Cells. Molecular Cancer Research, 2019, 17, 2480-2491.	1.5	25
32	Lactoferrin CpG Island Hypermethylation and Decoupling of mRNA and Protein Expression in the Early Stages of Prostate Carcinogenesis. American Journal of Pathology, 2019, 189, 2311-2322.	1.9	13
33	Asporin Restricts Mesenchymal Stromal Cell Differentiation, Alters the Tumor Microenvironment, and Drives Metastatic Progression. Cancer Research, 2019, 79, 3636-3650.	0.4	47
34	lf this is true, what does it imply? How end-user antibody validation facilitates insights into biology and disease. Asian Journal of Urology, 2019, 6, 10-25.	0.5	20
35	ls Androgen Deprivation Therapy "Another Deficient Therapy―for Gleason Score 9-10 Prostate Cancer?. European Urology, 2019, 75, 42-43.	0.9	1
36	Overexpression of α (1,6) fucosyltransferase in the development of castration-resistant prostate cancer and Prostatic Diseases, 2018, 21, 137-146.	2.0	35

MICHAEL C HAFFNER

#	Article	IF	CITATIONS
37	Comprehensive Evaluation of Programmed Death-Ligand 1 Expression in Primary and Metastatic Prostate Cancer. American Journal of Pathology, 2018, 188, 1478-1485.	1.9	119
38	Ipilimumab plus nivolumab and DNA-repair defects in AR-V7-expressing metastatic prostate cancer. Oncotarget, 2018, 9, 28561-28571.	0.8	129
39	Genomic analysis identifies frequent deletions of Dystrophin in olfactory neuroblastoma. Nature Communications, 2018, 9, 5410.	5.8	30
40	Analytic, Preanalytic, and Clinical Validation of p53 IHC for Detection of <i>TP53</i> Missense Mutation in Prostate Cancer. Clinical Cancer Research, 2017, 23, 4693-4703.	3.2	62
41	AIM1 is an actin-binding protein that suppresses cell migration and micrometastatic dissemination. Nature Communications, 2017, 8, 142.	5.8	36
42	Analytic Validation of RNA <i>In Situ</i> Hybridization (RISH) for AR and AR-V7 Expression in Human Prostate Cancer. Clinical Cancer Research, 2016, 22, 4651-4663.	3.2	34
43	Molecular evidence that invasive adenocarcinoma can mimic prostatic intraepithelial neoplasia (<scp>PIN</scp>) and intraductal carcinoma through retrograde glandular colonization. Journal of Pathology, 2016, 238, 31-41.	2.1	83
44	Shifting Paradigms for High-grade Prostatic Intraepithelial Neoplasia. European Urology, 2016, 69, 831-833.	0.9	8
45	Premalignancy in Prostate Cancer: Rethinking What We Know. Cancer Prevention Research, 2016, 9, 648-656.	0.7	44
46	Androgen Deprivation Followed by Acute Androgen Stimulation Selectively Sensitizes AR-Positive Prostate Cancer Cells to Ionizing Radiation. Clinical Cancer Research, 2016, 22, 3310-3319.	3.2	37
47	Diagnostic Challenges of Clonal Heterogeneity in Prostate Cancer. Journal of Clinical Oncology, 2015, 33, e38-e40.	0.8	48
48	Effect of bipolar androgen therapy for asymptomatic men with castration-resistant prostate cancer: Results from a pilot clinical study. Science Translational Medicine, 2015, 7, 269ra2.	5.8	205
49	Prostate adenocarcinomas aberrantly expressing p63 are molecularly distinct from usual-type prostatic adenocarcinomas. Modern Pathology, 2015, 28, 446-456.	2.9	49
50	Combining routine morphology, p16INK4a immunohistochemistry, and in situ hybridization for the detection of human papillomavirus infection in penile carcinomas: A tissue microarray study using classifier performance analyses. Urologic Oncology: Seminars and Original Investigations, 2014, 32,	0.8	32
51	Tight correlation of 5-hydroxymethylcytosine and Polycomb marks in health and disease. Cell Cycle, 2013, 12, 1835-1841.	1.3	23
52	High expression of prostate-specific membrane antigen in the tumor-associated neo-vasculature is associated with worse prognosis in squamous cell carcinoma of the oral cavity. Modern Pathology, 2012, 25, 1079-1085.	2.9	69
53	Global 5-hydroxymethylcytosine content is significantly reduced in tissue stem/progenitor cell compartments and in human cancers. Oncotarget, 2011, 2, 627-637.	0.8	383
54	Transcription-Induced DNA Double Strand Breaks: Both Oncogenic Force and Potential Therapeutic Target?. Clinical Cancer Research, 2011, 17, 3858-3864.	3.2	92

MICHAEL C HAFFNER

#	Article	IF	CITATIONS
55	Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nature Genetics, 2010, 42, 668-675.	9.4	539
56	Prostate-specific membrane antigen expression in the neovasculature of gastric and colorectal cancers. Human Pathology, 2009, 40, 1754-1761.	1.1	209
57	Interaction and Functional Interference of Glucocorticoid Receptor and SOCS1. Journal of Biological Chemistry, 2008, 283, 22089-22096.	1.6	33
58	Insulinâ€Like Growth Factorâ€Binding Proteinâ€5 Enters Vesicular Structures but Not the Nucleus. Traffic, 2007, 8, 1815-1828.	1.3	23
59	Favorable prognostic value of SOCS2 and IGF-I in breast cancer. BMC Cancer, 2007, 7, 136.	1.1	55
60	Exploiting Our Knowledge of NF-κB Signaling for the Treatment of Mammary Cancer. Journal of Mammary Gland Biology and Neoplasia, 2006, 11, 63-73.	1.0	40
61	Health-related quality-of-life outcomes after anatomic retropubic radical prostatectomy in the phosphodiesterase type 5 ERA: Impact of neurovascular bundle preservation. Urology, 2005, 66, 371-376.	0.5	24