Robert Edwards

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7568543/publications.pdf

Version: 2024-02-01

155 papers 12,102 citations

55 h-index 104 g-index

157 all docs

157 docs citations

157 times ranked

11911 citing authors

#	Article	IF	CITATIONS
1	Characterization of Cytochrome P450s with Key Roles in Determining Herbicide Selectivity in Maize. ACS Omega, 2022, 7, 17416-17431.	1.6	11
2	Target-Site and Non-target-Site Resistance Mechanisms Confer Multiple and Cross- Resistance to ALS and ACCase Inhibiting Herbicides in Lolium rigidum From Spain. Frontiers in Plant Science, 2021, 12, 625138.	1.7	38
3	Non-target Site Herbicide Resistance Is Conferred by Two Distinct Mechanisms in Black-Grass (Alopecurus myosuroides). Frontiers in Plant Science, 2021, 12, 636652.	1.7	37
4	Flavonoid-based inhibitors of the Phi-class glutathione transferase from black-grass to combat multiple herbicide resistance. Organic and Biomolecular Chemistry, 2021, 19, 9211-9222.	1.5	4
5	Chemically induced herbicide tolerance in rice by the safener metcamifen is associated with a phased stress response. Journal of Experimental Botany, 2020, 71, 411-421.	2.4	18
6	Evolution of generalist resistance to herbicide mixtures reveals a trade-off in resistance management. Nature Communications, 2020, 11 , 3086 .	5.8	63
7	Safening activity and metabolism of the safener cyprosulfamide in maize and wheat. Pest Management Science, 2020, 76, 3413-3422.	1.7	17
8	Detection and characterization of resistance to acetolactate synthase inhibiting herbicides in <i>Anisantha</i> and <i>Bromus</i> species in the United Kingdom. Pest Management Science, 2020, 76, 2473-2482.	1.7	21
9	Resisting resistance: new applications for molecular diagnostics in crop protection. Biochemist, 2020, 42, 6-12.	0.2	2
10	Herbicide Metabolism: Crop Selectivity, Bioactivation, Weed Resistance, and Regulation. Weed Science, 2019, 67, 149-175.	0.8	62
11	A coupled role for <i>CsMYB75</i> and <i>CsGSTF1</i> in anthocyanin hyperaccumulation in purple tea. Plant Journal, 2019, 97, 825-840.	2.8	105
12	<i>In Focus (i): Innovative crop protection for 21 < sup>st < /sup> century food security. Pest Management Science, 2018, 74, 779-780.</i>	1.7	0
13	Glutathione transferases catalyze recycling of autoâ€toxic cyanogenic glucosides in sorghum. Plant Journal, 2018, 94, 1109-1125.	2.8	60
14	Changes in the proteome of the problem weed blackgrass correlating with multipleâ€herbicide resistance. Plant Journal, 2018, 94, 709-720.	2.8	38
15	Testing a chemical series inspired by plant stress oxylipin signalling agents for herbicide safening activity. Pest Management Science, 2018, 74, 828-836.	1.7	22
16	Substrate specificity and safener inducibility of the plant UDPâ€glucoseâ€dependent family 1 glycosyltransferase superâ€family. Plant Biotechnology Journal, 2018, 16, 337-348.	4.1	51
17	Protein-Ligand Fishing in planta for Biologically Active Natural Products Using Glutathione Transferases. Frontiers in Plant Science, 2018, 9, 1659.	1.7	11
18	Tolerance of Transplastomic Tobacco Plants Overexpressing a Theta Class Glutathione Transferase to Abiotic and Oxidative Stresses. Frontiers in Plant Science, 2018, 9, 1861.	1.7	13

#	Article	IF	CITATIONS
19	Transcriptome sequencing identifies novel persistent viruses in herbicide resistant wild-grasses. Scientific Reports, 2017, 7, 41987.	1.6	26
20	Structural evidence for <i>Arabidopsis</i> glutathione transferase <i>At</i> GSTF2 functioning as a transporter of small organic ligands. FEBS Open Bio, 2017, 7, 122-132.	1.0	23
21	Potential roles for microbial endophytes in herbicide tolerance in plants. Pest Management Science, 2016, 72, 203-209.	1.7	56
22	Abstract 230: Protein Farnesylation Inhibitor Tipifarnib Prevents Development of Chronic Hypoxia-induced Pulmonary Hypertension. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	1.1	0
23	Plant synthetic biology: a new platform for industrial biotechnology. Journal of Experimental Botany, 2014, 65, 1927-1937.	2.4	32
24	Focus on Weed Control. Plant Physiology, 2014, 166, 1087-1089.	2.3	11
25	Metabolic engineering of the flavone-C-glycoside pathway using polyprotein technology. Metabolic Engineering, 2013, 16, 11-20.	3.6	54
26	Priority research questions for the UK food system. Food Security, 2013, 5, 617-636.	2.4	67
27	Protective responses induced by herbicide safeners in wheat. Environmental and Experimental Botany, 2013, 88, 93-99.	2.0	50
28	Key role for a glutathione transferase in multiple-herbicide resistance in grass weeds. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5812-5817.	3.3	261
29	Elucidation of the biosynthesis of the di-C-glycosylflavone isoschaftoside, an allelopathic component from Desmodium spp. that inhibits Striga spp. development. Phytochemistry, 2012, 84, 169-176.	1.4	27
30	Excessive folate synthesis limits lifespan in the C. elegans: E. coliaging model. BMC Biology, 2012, 10, 67.	1.7	102
31	Multiple roles for plant glutathione transferases in xenobiotic detoxification. Drug Metabolism Reviews, 2011, 43, 266-280.	1.5	329
32	New Perspectives on the Metabolism and Detoxification of Synthetic Compounds in Plants. Plant Ecophysiology, 2011, , 125-148.	1.5	44
33	The <i>Arabidopsis</i> phi class glutathione transferase <i>At</i> GSTF2: binding and regulation by biologically active heterocyclic ligands. Biochemical Journal, 2011, 438, 63-70.	1.7	64
34	Plants: biofactories for a sustainable future?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 1826-1839.	1.6	19
35	Conserved cysteine residues in the mammalian lamin A tail are essential for cellular responses to ROS generation. Aging Cell, 2011, 10, 1067-1079.	3.0	79
36	Roles for glutathione transferases in antioxidant recycling. Plant Signaling and Behavior, 2011, 6, 1223-1227.	1.2	42

3

#	Article	IF	Citations
37	Xenobiotic Responsiveness of Arabidopsis thaliana to a Chemical Series Derived from a Herbicide Safener. Journal of Biological Chemistry, 2011, 286, 32268-32276.	1.6	61
38	Glutathione Transferases. The Arabidopsis Book, 2010, 8, e0131.	0.5	183
39	Halomethane Biosynthesis: Structure of a SAMâ€Dependent Halide Methyltransferase from <i>Arabidopsis thaliana</i> . Angewandte Chemie - International Edition, 2010, 49, 3646-3648.	7.2	50
40	Roles for glutathione transferases in plant secondary metabolism. Phytochemistry, 2010, 71, 338-350.	1.4	409
41	BODIPY probes to study peroxisome dynamics in vivo. Plant Journal, 2010, 62, 529-538.	2.8	34
42	Roles for Stress-inducible Lambda Glutathione Transferases in Flavonoid Metabolism in Plants as Identified by Ligand Fishing. Journal of Biological Chemistry, 2010, 285, 36322-36329.	1.6	73
43	Fluorescence quenched quinone methide based activity probes – a cautionary tale. Organic and Biomolecular Chemistry, 2010, 8, 1610.	1.5	19
44	Enzyme activities and subcellular localization of members of the Arabidopsis glutathione transferase superfamily. Journal of Experimental Botany, 2009, 60, 1207-1218.	2.4	260
45	The C-Glycosylation of Flavonoids in Cereals. Journal of Biological Chemistry, 2009, 284, 17926-17934.	1.6	254
46	Selective Binding of Glutathione Conjugates of Fatty Acid Derivatives by Plant Glutathione Transferases. Journal of Biological Chemistry, 2009, 284, 21249-21256.	1.6	73
47	Safener responsiveness and multiple herbicide resistance in the weed blackâ€grass (<i>Alopecurus) Tj ETQq1 1 (</i>).784314 r	gBT/Overlo
48	A kinetic model for the metabolism of the herbicide safener fenclorim in Arabidopsis thaliana. Biophysical Chemistry, 2009, 143, 85-94.	1.5	13
49	An Efficient Method for $\langle \sup 15 \rangle$ Sup $\langle N \rangle$ N-Labeling of Chitin in Fungi. Biomacromolecules, 2009, 10, 793-797.	2.6	9
50	Glycosylation of Secondary Metabolites and Xenobiotics., 2009,, 209-228.		10
51	Modifying the acylation of flavonols in Petunia hybrida. Phytochemistry, 2008, 69, 2016-2021.	1.4	5
52	Getting the most out of publicly available Tâ€DNA insertion lines. Plant Journal, 2008, 56, 665-677.	2.8	56
53	Determination and Isolation of a Thioesterase from Passion Fruit (Passiflora edulis Sims) That Hydrolyzes Volatile Thioesters. Journal of Agricultural and Food Chemistry, 2008, 56, 6623-6630.	2.4	10
54	Binding and Glutathione Conjugation of Porphyrinogens by Plant Glutathione Transferases. Journal of Biological Chemistry, 2008, 283, 20268-20276.	1.6	52

#	Article	IF	CITATIONS
55	Catabolism of Glutathione Conjugates in Arabidopsis thaliana. Journal of Biological Chemistry, 2008, 283, 21102-21112.	1.6	60
56	Characterization and engineering of the bifunctional $\langle i \rangle N \langle i \rangle$ - and $\langle i \rangle O \langle i \rangle$ -glucosyltransferase involved in xenobiotic metabolism in plants. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20238-20243.	3.3	267
57	Role of a Carboxylesterase in Herbicide Bioactivation in Arabidopsis thaliana. Journal of Biological Chemistry, 2007, 282, 21460-21466.	1.6	51
58	Regulating biological activity in plants with carboxylesterases. Plant Science, 2007, 173, 579-588.	1.7	76
59	Structure activity studies with xenobiotic substrates using carboxylesterases isolated from Arabidopsis thaliana. Phytochemistry, 2007, 68, 811-818.	1.4	30
60	Identification of a carboxylesterase expressed in protoplasts using fluorescence-activated cell sorting. Plant Biotechnology Journal, 2007, 5, 354-359.	4.1	7
61	Selection of plants for roles in phytoremediation: the importance of glucosylation. Plant Biotechnology Journal, 2007, 5, 627-635.	4.1	26
62	Species-specific effects of elevated CO2 on resource allocation in Plantago maritima and Armeria maritima. Biochemical Systematics and Ecology, 2007, 35, 121-129.	0.6	4
63	Unique Regulation of the Active site of the Serine Esterase S-Formylglutathione Hydrolase. Journal of Molecular Biology, 2006, 359, 422-432.	2.0	35
64	Enzymes of tyrosine catabolism in Arabidopsis thaliana. Plant Science, 2006, 171, 360-366.	1.7	60
65	Selective disruption of wheat secondary metabolism by herbicide safeners. Phytochemistry, 2006, 67, 1722-1730.	1.4	40
66	Cloning and characterization of a theta class glutathione transferase from the potato pathogen Phytophthora infestans. Phytochemistry, 2006, 67, 1427-1434.	1.4	11
67	Carboxylesterase activities toward pesticide esters in crops and weeds. Phytochemistry, 2006, 67, 2561-2567.	1.4	44
68	Experimental and Computational Assessment of Conditionally Essential Genes in Escherichia coli. Journal of Bacteriology, 2006, 188, 8259-8271.	1.0	237
69	Diversification in substrate usage by glutathione synthetases from soya bean (Glycine max), wheat (Triticum aestivum) and maize (Zea mays). Biochemical Journal, 2005, 391, 567-574.	1.7	17
70	Plant Glutathione Transferases. Methods in Enzymology, 2005, 401, 169-186.	0.4	210
71	Manipulation of plant tolerance to herbicides through co-ordinated metabolic engineering of a detoxifying glutathione transferase and thiol cosubstrate. Plant Biotechnology Journal, 2005, 3, 409-420.	4.1	42
72	Functional importance of the family 1 glucosyltransferase UGT72B1 in the metabolism of xenobiotics in Arabidopsis thaliana. Plant Journal, 2005, 42, 556-566.	2.8	66

#	Article	IF	CITATIONS
73	Purification and characterisation of a family of glutathione transferases with roles in herbicide detoxification in soybean (Glycine max L.); selective enhancement by herbicides and herbicide safeners. Pesticide Biochemistry and Physiology, 2005, 82, 205-219.	1.6	43
74	High-Throughput Mass-Spectrometry Monitoring for Multisubstrate Enzymes: Determining the Kinetic Parameters and Catalytic Activities of Glycosyltransferases. ChemBioChem, 2005, 6, 346-357.	1.3	55
75	Stress-Induced Protein S-Glutathionylation in Arabidopsis. Plant Physiology, 2005, 138, 2233-2244.	2.3	282
76	Differential Induction of Glutathione Transferases and Glucosyltransferases in Wheat, Maize and Arabidopsis thaliana by Herbicide Safeners. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2005, 60, 307-316.	0.6	57
77	Redox Regulation of a Soybean Tyrosine-Specific Protein Phosphataseâ€. Biochemistry, 2005, 44, 7696-7703.	1.2	40
78	Synthesis and analysis of chimeric maize glutathione transferases. Plant Science, 2005, 168, 873-881.	1.7	6
79	Chemical Manipulation of Antioxidant Defences in Plants. Advances in Botanical Research, 2005, , 1-32.	0.5	51
80	Purification and cloning of an esterase from the weed black-grass (Alopecurus myosuroides), which bioactivates aryloxyphenoxypropionate herbicides. Plant Journal, 2004, 39, 894-904.	2.8	58
81	Effects of elevated CO2 on the vasculature and phenolic secondary metabolism of Plantago maritima. Phytochemistry, 2004, 65, 2197-2204.	1.4	36
82	Metabolism of Natural and Xenobiotic Substrates by the Plant Glutathione S-Transferase Superfamily. Ecological Studies, 2004, , 17-50.	0.4	23
83	Cloning, characterization and regulation of a family of phi class glutathione transferases from wheat. Plant Molecular Biology, 2003, 52, 591-603.	2.0	53
84	Partial purification and characterisation of a 2,4,5-trichlorophenol detoxifying O-glucosyltransferase from wheat. Phytochemistry, 2003, 64, 419-424.	1.4	15
85	3,4-Dichloroaniline is detoxified and exported via different pathways in Arabidopsis and soybean. Phytochemistry, 2003, 63, 653-661.	1.4	22
86	Isolation of a glucosyltransferase from Arabidopsis thaliana active in the metabolism of the persistent pollutant 3,4-dichloroaniline. Plant Journal, 2003, 34, 485-493.	2.8	93
87	Purification, crystallization and preliminary X-ray diffraction analysis of S-formylglutathione hydrolase from Arabidopsis thaliana: effects of pressure and selenomethionine substitution on space-group changes. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 2272-2274.	2.5	4
88	Forced Evolution of a Herbicide Detoxifying Glutathione Transferase. Journal of Biological Chemistry, 2003, 278, 23930-23935.	1.6	109
89	Cloning and Initial Characterization of theArabidopsis thalianaEndoplasmic Reticulum Oxidoreductins. Antioxidants and Redox Signaling, 2003, 5, 389-396.	2.5	38
90	Induction of Glutathione S-Transferases in Arabidopsis by Herbicide Safeners. Plant Physiology, 2002, 130, 1497-1505.	2.3	147

#	Article	IF	CITATIONS
91	Cloning and Characterization of an S-Formylglutathione Hydrolase from Arabidopsis thaliana. Archives of Biochemistry and Biophysics, 2002, 399, 232-238.	1.4	37
92	Functional Divergence in the Glutathione Transferase Superfamily in Plants. Journal of Biological Chemistry, 2002, 277, 30859-30869.	1.6	355
93	Plant glutathione transferases. Genome Biology, 2002, 3, reviews3004.1.	13.9	594
94	O-Glucosyltransferase activities toward phenolic natural products and xenobiotics in wheat and herbicide-resistant and herbicide-susceptible black-grass (Alopecurus myosuroides). Phytochemistry, 2002, 59, 149-156.	1.4	108
95	Structure of a Tau Class GlutathioneS-Transferase from Wheat Active in Herbicide Detoxificationâ€,‡. Biochemistry, 2002, 41, 7008-7020.	1.2	154
96	Probing the diversity of the Arabidopsis glutathione S-transferase gene family. Plant Molecular Biology, 2002, 49, 515-532.	2.0	465
97	The structure of a zeta class glutathione S-transferase from Arabidopsis thaliana: characterisation of a GST with novel active-site architecture and a putative role in tyrosine catabolism. Journal of Molecular Biology, 2001, 308, 949-962.	2.0	109
98	Biochemical characterisation of esterases active in hydrolysing xenobiotics in wheat and competing weeds. Physiologia Plantarum, 2001, 113, 477-485.	2.6	35
99	Plant glutathione S -transferases: enzymes with multiple functions in sickness and in health. Trends in Plant Science, 2000, 5, 193-198.	4.3	827
100	Cloning and Characterization of Glyoxalase I from Soybean. Archives of Biochemistry and Biophysics, 2000, 374, 261-268.	1.4	30
101	Characterisation of a Zeta Class Glutathione Transferase from Arabidopsis thaliana with a Putative Role in Tyrosine Catabolism. Archives of Biochemistry and Biophysics, 2000, 384, 407-412.	1.4	70
102	Elicitation of tropane alkaloid biosynthesis in transformed root cultures of Datura stramonium. Phytochemistry, 1999, 50, 53-56.	1.4	76
103	Glutathione transferases involved in herbicide detoxification in the leaves of Setaria faberi (giant) Tj ETQq $1\ 1\ 0.784$	314 rgBT 2.6	/gyerlock 1
104	A role for glutathione transferases functioning as glutathione peroxidases in resistance to multiple herbicides in black-grass. Plant Journal, 1999, 18, 285-292.	2.8	298
105	Higher plant tyrosine-specific protein phosphatases (PTPs) contain novel amino-terminal domains: expression during embryogenesis. Plant Molecular Biology, 1999, 39, 593-605.	2.0	40
106	Dimerisation of maize glutathione transferases in recombinant bacteria. Plant Molecular Biology, 1999, 40, 997-1008.	2.0	57
107	Purification, regulation and cloning of a glutathione transferase (GST) from maize resembling the auxin-inducible type-III GSTs. Plant Molecular Biology, 1998, 36, 75-87.	2.0	111
108	Glutathione-mediated detoxification systems in plants. Current Opinion in Plant Biology, 1998, 1, 258-266.	3.5	346

7

#	Article	IF	CITATIONS
109	Glutathione transferases and herbicide detoxification in suspension-cultured cells of giant foxtail (Setaria faberi). Pest Management Science, 1998, 53, 209-216.	0.7	11
110	Substrate and thiol specificity of a stress-inducible glutathione transferase from soybean. FEBS Letters, 1997, 409, 370-374.	1.3	47
111	The effect of plant age and nodulation on the isoflavonoid content of red clover (Trifolium) Tj ETQq1 1 0.784314	ł rgBT /Ov	erlock 10 Tf 5
112	Purification of Multiple Glutathione Transferases Involved in Herbicide Detoxification from Wheat (Triticum aestivumL.) Treated with the Safener Fenchlorazole-ethyl. Pesticide Biochemistry and Physiology, 1997, 59, 35-49.	1.6	99
113	Methylation reactions and the phytoalexin response in alfalfa suspension cultures. Planta, 1997, 201, 359-367.	1.6	3
114	Alfalfa cell cultures treated with a fungal elicitor accumulate flavone metabolites rather than isoflavones in the presence of the methylation inhibitor tubericidin. Phytochemistry, 1997, 44, 285-291.	1.4	12
115	Characterization and inducibility of a scopoletin-degrading enzyme from sunflower. Phytochemistry, 1997, 45, 1109-1114.	1.4	20
116	Characterisation of Multiple Glutathione Transferases Containing the GST I Subunit with Activities toward Herbicide Substrates in Maize (Zea mays). Pest Management Science, 1997, 50, 72-82.	0.7	70
117	Glutathione transferase activities toward herbicides used selectively in soybean. Pest Management Science, 1997, 51, 213-222.	0.7	38
118	Glutathione transferases in herbicide-resistant and herbicide-susceptible black-grass (Alopecurus) Tj ETQq0 0 0 rg	gBT/Overl 0:7	ock 10 Tf 50
119	The production of coumarin phytoalexins in different plant organs of sunflower (Helianthus annuus) Tj ETQq1 1 (0.784314 1.6	rgBJ /Overlo
120	Glutathione Transferases in Wheat (Triticum) Species with Activity toward Fenoxaprop-Ethyl and Other Herbicides. Pesticide Biochemistry and Physiology, 1996, 54, 96-104.	1.6	59
121	Influence of Plant Age on Glutathione Levels and Glutathione Transferases Involved in Herbicide Detoxification in Corn (Zea maysL.) and Giant Foxtail (Setaria faberiHerrm). Pesticide Biochemistry and Physiology, 1996, 54, 199-209.	1.6	19
122	Glutathione Transferase Activities and Herbicide Selectivity in Maize and Associated Weed Species. Pest Management Science, 1996, 46, 267-275.	0.7	97
123	Characterisation of glutathione transferases and glutathione peroxidases in pea (Pisum sativum). Physiologia Plantarum, 1996, 98, 594-604.	2.6	60
124	S-adenosyl-l-methionine metabolism in alfalfa cell cultures following treatment with fungal elicitors. Phytochemistry, 1996, 43, 1163-1169.	1.4	24
125	Characterisation of glutathione transferases and glutathione peroxidases in pea (Pisum sativum). Physiologia Plantarum, 1996, 98, 594-604.	2.6	64
126	Glutathione transferases in major weedspecies. Pest Management Science, 1995, 43, 173-175.	0.7	4

#	Article	IF	CITATIONS
127	Determination of S-adenosyl-L-methionine and S-adenosyl-L-homocysteine in plants. Phytochemical Analysis, 1995, 6, 25-30.	1.2	17
128	Abiotic elicitation of coumarin phytoalexins in sunflower. Phytochemistry, 1995, 38, 1185-1191.	1.4	70
129	Isoflavonoid Conjugate Accumulation in the Roots of Lucerne (Medicago Sativa) Seedlings Following Infection By the Stem Nematode (Ditylenchus Dipsaci). Nematologica, 1995, 41, 51-66.	0.2	33
130	Changes in protein methylation associated with the elicitation response in cell cultures of alfalfa (Medicago satival.). FEBS Letters, 1995, 360, 57-61.	1.3	10
131	Changes in the accumulation of flavonoid and isoflavonoid conjugates associated with plant age and nodulation in alfalfa (Medicago sativa). Physiologia Plantarum, 1994, 91, 27-36.	2.6	3
132	Characterization of O-glucosyltransferases with activities toward phenolic substrates in alfalfa. Phytochemistry, 1994, 37, 655-661.	1.4	20
133	Changes in the accumulation of flavonoid and isoflavonoid conjugates associated with plant age and nodulation in alfalfa (Medicago sativa). Physiologia Plantarum, 1994, 91, 27-36.	2.6	53
134	Conjugation and Metabolism of Salicylic Acid in Tobacco. Journal of Plant Physiology, 1994, 143, 609-614.	1.6	53
135	Determination of cinnamic acid and 4-coumaric acid in alfalfa (Medicago sativa L.) cell suspension cultures by gas chromatography. Phytochemical Analysis, 1993, 4, 124-130.	1.2	6
136	Stress Responses in Alfalfa (Medicago sativa L.) (XIV. Changes in the Levels of Phenylpropanoid) Tj ETQq0 0 0 rg	BT /Overlo 2.3	ock 10 Tf 50 3 44
137	Identification, purification, and characterization of S-adenosyl-l-methionine: Isoliquiritigenin 2′-O-methyltransferase from alfalfa (Medicago sativa L.). Archives of Biochemistry and Biophysics, 1992, 293, 158-166.	1.4	46
138	Induction of phenylpropanoid pathway enzymes in elicitor-treated cultures of Cephalocereus senilis. Phytochemistry, 1992, 31, 149-153.	1.4	22
139	Molecular Biology of Stress-Induced Phenylpropanoid and Isoflavonoid Biosynthesis in Alfalfa. , 1992, , 91-138.		38
140	Purification and characterization of S-adenosyl-l-methionine: Caffeic acid 3-O-methyltransferase from suspension cultures of alfalfa (Medicago sativa L.). Archives of Biochemistry and Biophysics, 1991, 287, 372-379.	1.4	60
141	Glutathione S-cinnamoyl transferases in plants. Phytochemistry, 1991, 30, 79-84.	1.4	44
142	Isoflavone O-methyltransferase activities in elicitor-treated cell suspension cultures of Medicago sativa. Phytochemistry, 1991, 30, 2597-2606.	1.4	56
143	Stress responses in alfalfa (Medicago sativa L.) 11. Molecular cloning and expression of alfalfa isoflavone reductase, a key enzyme of isoflavonoid phytoalexin biosynthesis. Plant Molecular Biology, 1991, 17, 653-667.	2.0	158
144	Glutathione and elicitation of the phytoalexin response in legume cell cultures. Planta, 1991, 184, 403-9.	1.6	92

#	Article	IF	CITATIONS
145	Comparative metabolism and disposition of [14C-benzyl] cypermethrin in quail, rat and mouse. Pest Management Science, 1990, 30, 159-181.	0.7	7
146	Metabolic fate of cinnamic acid in elicitor treated cell suspension cultures of Phaseolus vulgaris. Phytochemistry, 1990, 29, 1867-1873.	1.4	36
147	Effects of trans-Cinnamic Acid on Expression of the Bean Phenylalanine Ammonia-Lyase Gene Family. Plant Physiology, 1990, 94, 671-680.	2.3	99
148	Stress Responses in Alfalfa (Medicago sativa L.). Plant Physiology, 1990, 94, 227-232.	2.3	95
149	Stress Responses in Alfalfa (<i>Medicago sativa</i> L.). Plant Physiology, 1990, 92, 440-446.	2.3	101
150	Abnormal plant development and down-regulation of phenylpropanoid biosynthesis in transgenic tobacco containing a heterologous phenylalanine ammonia-lyase gene Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 9057-9061.	3.3	305
151	Regulation of glutathione S-transferases of Zea mays in plants and cell cultures. Planta, 1988, 175, 99-106.	1.6	27
152	Isoenzymes of glutathione <i>S</i> -transferase in <i>Zea mays</i> . Biochemical Society Transactions, 1987, 15, 1184-1184.	1.6	12
153	Factors influencing the selective toxicity ofcis- andtrans-cypermethrin in rainbow trout, frog, mouse and quail: Biotransformation in liver, plasma, brain and intestine. Pest Management Science, 1987, 21, 1-21.	0.7	10
154	Comparison of glutathione S-transferases of Zea mays responsible for herbicide detoxification in plants and suspension-cultured cells. Planta, 1986, 169, 208-215.	1.6	86
155	Comparative toxicity of cis-cypermethrin in rainbow trout, frog, mouse, and quail. Toxicology and Applied Pharmacology, 1986, 84, 512-522.	1.3	71