Priti Mudgil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7568487/publications.pdf

Version: 2024-02-01

38 2,063 26 38 papers citations h-index g-index

38 38 38 38 1751

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Nano-encapsulation of catechin in starch nanoparticles: Characterization, release behavior and bioactivity retention during simulated in-vitro digestion. Food Chemistry, 2019, 270, 95-104.	4.2	237
2	Bioactive compounds from date fruit and seed as potential nutraceutical and functional food ingredients. Food Chemistry, 2020, 308, 125522.	4.2	164
3	Characterization and identification of novel antidiabetic and anti-obesity peptides from camel milk protein hydrolysates. Food Chemistry, 2018, 259, 46-54.	4.2	156
4	Identification of novel dipeptidyl peptidase IV (DPP-IV) inhibitory peptides in camel milk protein hydrolysates. Food Chemistry, 2018, 244, 340-348.	4.2	127
5	Camel milk protein hydrolysates with improved technofunctional properties and enhanced antioxidant potential in in vitro and in food model systems. Journal of Dairy Science, 2018, 101, 47-60.	1.4	91
6	Dipeptidyl peptidase IV (DPP-IV) inhibitory properties of camel milk protein hydrolysates generated with trypsin. Journal of Functional Foods, 2017, 34, 49-58.	1.6	87
7	Inhibitory properties of camel whey protein hydrolysates toward liver cancer cells, dipeptidyl peptidase-IV, and inflammation. Journal of Dairy Science, 2018, 101, 8711-8720.	1.4	74
8	Dipeptidyl peptidase IV (DPP-IV) inhibitory properties of a camel whey protein enriched hydrolysate preparation. Food Chemistry, 2019, 279, 70-79.	4.2	72
9	Multi-functional bioactive properties of intact and enzymatically hydrolysed quinoa and amaranth proteins. LWT - Food Science and Technology, 2019, 110, 207-213.	2.5	68
10	Rheological, micro-structural and sensorial properties of camel milk yogurt as influenced by gelatin. LWT - Food Science and Technology, 2018, 98, 646-653.	2.5	64
11	D1/D2 Domain of Large-Subunit Ribosomal DNA for Differentiation of Orpinomyces spp. Applied and Environmental Microbiology, 2011, 77, 6722-6725.	1.4	62
12	Camel whey protein hydrolysates displayed enhanced cholesteryl esterase and lipase inhibitory, anti-hypertensive and anti-haemolytic properties. LWT - Food Science and Technology, 2018, 98, 212-218.	2.5	61
13	Comparative characterization of protein and lipid fractions from camel and cow milk, their functionality, antioxidant and antihypertensive properties upon simulated gastro-intestinal digestion. Food Chemistry, 2019, 279, 328-338.	4.2	61
14	Molecular binding mechanism and identification of novel anti-hypertensive and anti-inflammatory bioactive peptides from camel milk protein hydrolysates. LWT - Food Science and Technology, 2019, 112, 108193.	2.5	58
15	Multifunctional bioactive peptides derived from quinoa protein hydrolysates: Inhibition of α-glucosidase, dipeptidyl peptidase-IV and angiotensin I converting enzymes. Journal of Cereal Science, 2020, 96, 103130.	1.8	54
16	Identification and characterization of novel $\hat{l}\pm$ -amylase and $\hat{l}\pm$ -glucosidase inhibitory peptides from camel whey proteins. Journal of Dairy Science, 2021, 104, 1364-1377.	1.4	50
17	Simulated gastrointestinal digestion of camel and bovine casein hydrolysates: Identification and characterization of novel anti-diabetic bioactive peptides. Food Chemistry, 2021, 353, 129374.	4.2	50
18	Camel whey protein hydrolysates induced G2/M cellcycle arrest in human colorectal carcinoma. Scientific Reports, 2021, 11, 7062.	1.6	47

#	Article	IF	CITATIONS
19	Molecular basis of the anti-diabetic properties of camel milk through profiling of its bioactive peptides on dipeptidyl peptidase IV (DPP-IV) and insulin receptor activity. Journal of Dairy Science, 2021, 104, 61-77.	1.4	45
20	Camel whey protein microparticles for safe and efficient delivery of novel camel milk derived probiotics. LWT - Food Science and Technology, 2019, 108, 81-88.	2.5	42
21	Pepsin generated camel whey protein hydrolysates with potential antihypertensive properties: Identification and molecular docking of antihypertensive peptides. LWT - Food Science and Technology, 2021, 143, 111135.	2.5	38
22	Identification and molecular docking study of novel cholesterol esterase inhibitory peptides from camel milk proteins. Journal of Dairy Science, 2019, 102, 10748-10759.	1.4	36
23	Vacuum packaging as an effective strategy to retard off-odour development, microbial spoilage, protein degradation and retain sensory quality of camel meat. LWT - Food Science and Technology, 2016, 72, 55-62.	2.5	33
24	A comparative investigation into novel cholesterol esterase and pancreatic lipase inhibitory peptides from cow and camel casein hydrolysates generated upon enzymatic hydrolysis and in-vitro digestion. Food Chemistry, 2022, 367, 130661.	4.2	33
25	Effect of camel milk protein hydrolysates against hyperglycemia, hyperlipidemia, and associated oxidative stress in streptozotocin (STZ)-induced diabetic rats. Journal of Dairy Science, 2021, 104, 1304-1317.	1.4	29
26	New insights into the cholesterol esterase- and lipase-inhibiting potential of bioactive peptides from camel whey hydrolysates: Identification, characterization, and molecular interaction. Journal of Dairy Science, 2021, 104, 7393-7405.	1.4	29
27	Dipeptidyl peptidase-IV, α-amylase, and angiotensin I converting enzyme inhibitory properties of novel camel skin gelatin hydrolysates. LWT - Food Science and Technology, 2019, 101, 251-258.	2.5	28
28	Amaranth proteins as potential source of bioactive peptides with enhanced inhibition of enzymatic markers linked with hypertension and diabetes. Journal of Cereal Science, 2021, 101, 103308.	1.8	27
29	A comprehensive review on health benefits, nutritional composition and processed products of camel milk. Food Reviews International, 2023, 39, 3080-3116.	4.3	26
30	Camel milk-derived probiotic strains encapsulated in camel casein and gelatin complex microcapsules: Stability against thermal challenge and simulated gastrointestinal digestion conditions. Journal of Dairy Science, 2022, 105, 1862-1877.	1.4	21
31	Identification and characterization of cholesterol esterase and lipase inhibitory peptides from amaranth protein hydrolysates. Food Chemistry: X, 2021, 12, 100165.	1.8	19
32	Production, characterization, and bioactivity of novel camel milk-based infant formula in comparison to bovine and commercial sources. LWT - Food Science and Technology, 2022, 154, 112813.	2.5	16
33	Comparative evaluation of lignocellulolytic activities of filamentous cultures of monocentric and polycentric anaerobic fungi. Anaerobe, 2018, 50, 76-79.	1.0	14
34	Fortification of Chami (traditional soft cheese) with probiotic-loaded protein and starch microparticles: Characterization, bioactive properties, and storage stability. LWT - Food Science and Technology, 2022, 158, 113036.	2.5	13
35	Plant-derived proteins as a sustainable source of bioactive peptides: recent research updates on emerging production methods, bioactivities, and potential application. Critical Reviews in Food Science and Nutrition, 2023, 63, 9539-9560.	5.4	12
36	\hat{l}^2 -Glucosidase Activity of Lactobacilli for Biotransformation of Soy Isoflavones. Food Biotechnology, 2012, 26, 154-163.	0.6	8

Priti Mudgil

#	Article	IF	CITATIONS
37	Cow and camel milk-derived whey and casein protein hydrolysates demonstrated effective antifungal properties against selected Candida species. Journal of Dairy Science, 2022, 105, 1878-1888.	1.4	8
38	Ultrasonication as a novel processing alternative to pasteurization for camel milk: Effects on microbial load, protein profile, and bioactive properties. Journal of Dairy Science, 2022, 105, 6548-6562.	1.4	3