Maria WojewÃ³dzka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7568474/publications.pdf Version: 2024-02-01

ΜΑΡΙΑ ΜΟΙΕΙΝΑ3ΟΖΚΑ

#	Article	IF	CITATIONS
1	The effect of agglomeration state of silver and titanium dioxide nanoparticles on cellular response of HepG2, A549 and THP-1 cells. Toxicology Letters, 2012, 208, 197-213.	0.8	207
2	Timeâ€dependent biodistribution and excretion of silver nanoparticles in male Wistar rats. Journal of Applied Toxicology, 2012, 32, 920-928.	2.8	194
3	Silver nanoparticles effects on epididymal sperm in rats. Toxicology Letters, 2012, 214, 251-258.	0.8	143
4	A modified neutral comet assay: elimination of lysis at high temperature and validation of the assay with anti-single-stranded DNA antibody. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2002, 518, 9-20.	1.7	129
5	Application of the comet assay for monitoring DNA damage in workers exposed to chronic low-dose irradiation. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 1998, 416, 21-35.	1.7	116
6	Effect of surface modification of silica nanoparticles on toxicity and cellular uptake by human peripheral blood lymphocytes <i>in vitro</i> . Nanotoxicology, 2013, 7, 235-250.	3.0	83
7	Toxicity of Silver Nanomaterials in Higher Eukaryotes. Advances in Molecular Toxicology, 2011, 5, 179-218.	0.4	82
8	The first gamma-H2AX biodosimetry intercomparison exercise of the developing European biodosimetry network RENEB. Radiation Protection Dosimetry, 2015, 164, 265-270.	0.8	62
9	FociCounter: A freely available PC programme for quantitative and qualitative analysis of gamma-H2AX foci. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2010, 696, 16-20.	1.7	61
10	Oxidative DNA damage corresponds to the long term survival of human cells treated with silver nanoparticles. Toxicology Letters, 2013, 219, 151-159.	0.8	58
11	In vitro genotoxicity of ethanol and acetaldehyde in human lymphocytes and the gastrointestinal tract mucosa cells. Toxicology in Vitro, 2000, 14, 287-295.	2.4	53
12	Ag nanoparticles: size- and surface-dependent effects on model aquatic organisms and uptake evaluation with NanoSIMS. Nanotoxicology, 2013, 7, 1168-1178.	3.0	53
13	DNA damage and repair in human lymphocytes and gastric mucosa cells exposed to chromium and curcumin. Teratogenesis, Carcinogenesis, and Mutagenesis, 1999, 19, 19-31.	0.8	51
14	Application of the comet assay for monitoring DNA damage in workers exposed to chronic low-dose irradiation. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 1998, 416, 37-57.	1.7	49
15	Lack of adverse effect of smoking habit on DNA strand breakage and base damage, as revealed by the alkaline comet assay. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 1999, 440, 19-25.	1.7	49
16	The second gamma-H2AX assay inter-comparison exercise carried out in the framework of the European biodosimetry network (RENEB). International Journal of Radiation Biology, 2017, 93, 58-64.	1.8	46
17	Silver and titanium dioxide nanoparticles alter oxidative/inflammatory response and renin–angiotensin system in brain. Food and Chemical Toxicology, 2015, 85, 96-105.	3.6	40
18	Calcium Antagonist, TMB-8, Prevents the Induction of Adaptive Response by Hydrogen Peroxide or X-rays in Human Lymphocytes. International Journal of Radiation Biology, 1994, 66, 99-109.	1.8	38

Maria WojewÃ³dzka

#	Article	IF	CITATIONS
19	Crucial role of chelatable iron in silver nanoparticles induced DNA damage and cytotoxicity. Redox Biology, 2018, 15, 435-440.	9.0	36
20	DNA damage and repair in human lymphocytes exposed to three anticancer platinum drugs. Teratogenesis, Carcinogenesis, and Mutagenesis, 2000, 20, 119-131.	0.8	31
21	Genotoxic potential of diesel exhaust particles from the combustion of first- and second-generation biodiesel fuels—the FuelHealth project. Environmental Science and Pollution Research, 2017, 24, 24223-24234.	5.3	29
22	Effect of signal transduction inhibition in adapted lymphocytes: micronuclei frequency and DNA repair. International Journal of Radiation Biology, 1997, 71, 245-252.	1.8	26
23	Differential inhibitory effect of OK-1035 on DNA repair in L5178Y murine lymphoma sublines with functional or defective repair of double strand breaks. Mutation Research DNA Repair, 1998, 409, 31-36.	3.7	25
24	Increased DNA repair capacity augments resistance of glioblastoma cells to photodynamic therapy. DNA Repair, 2021, 104, 103136.	2.8	17
25	The dose-response relationship for dicentric chromosomes and Î ³ -H2AX foci in human peripheral blood lymphocytes: Influence of temperature during exposure and intra- and inter-individual variability of donors. International Journal of Radiation Biology, 2013, 89, 191-199.	1.8	16
26	Direct use of the comet assay to study cell cycle distribution and its application to study cell cycle-dependent DNA damage formation. Mutagenesis, 2012, 27, 551-558.	2.6	14
27	Sirtuin inhibition increases the rate of non-homologous end-joining of DNA double strand breaks Acta Biochimica Polonica, 2007, 54, 63-69.	0.5	14
28	Anti-CD38 prevents the development of the adaptive response induced by X-rays in human lymphocytes. Mutagenesis, 1996, 11, 593-596.	2.6	11
29	The radiation sensitivity of human chromosomes 2, 8 and 14 in peripheral blood lymphocytes of seven donors. International Journal of Radiation Biology, 2005, 81, 741-749.	1.8	10
30	The effects of 1st and 2nd generation biodiesel exhaust exposure on hematological and biochemical blood indices of Fisher344 male rats – The FuelHealth project. Environmental Toxicology and Pharmacology, 2018, 63, 34-47.	4.0	10
31	Cis-9,trans-11-conjugated linoleic acid affects lipid raft composition and sensitizes human colorectal adenocarcinoma HT-29 cells to X-radiation. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 2233-2242.	2.4	9
32	Defining Blood Processing Parameters for Optimal Detection of Î ³ -H2AX Foci: A Small Blood Volume Method. Radiation Research, 2015, 184, 95-104.	1.5	9
33	Susceptibility of HepG2 Cells to Silver Nanoparticles in Combination with other Metal/Metal Oxide Nanoparticles. Materials, 2020, 13, 2221.	2.9	8
34	hMTH1 is required for maintaining migration and invasion potential of human thyroid cancer cells. DNA Repair, 2018, 69, 53-62.	2.8	7
35	Investigation of the bystander effect in CHO-K1 cells. Reports of Practical Oncology and Radiotherapy, 2014, 19, S37-S41.	0.6	5
36	Silver Nanoparticles Inhibit Metastasis of 4T1 Tumor in Mice after Intragastric but Not Intravenous Administration. Materials, 2022, 15, 3837.	2.9	5

3

Maria WojewÃ³dzka

#	Article	IF	CITATIONS
37	Removal of239Pu from mice with 3,4,3 LICAM(C) or N, N?, N?, N?-tetra-(2,3-dihydroxybenzoyl)-spermine. Radiation and Environmental Biophysics, 1986, 25, 31-35.	1.4	4
38	Differential DNA double strand break fixation dependence on poly(ADPâ€ribosylation) in L5178Y and CHO cells. International Journal of Radiation Biology, 2004, 80, 473-482.	1.8	4
39	Dihydropyridines decrease X-ray-induced DNA base damage in mammalian cells. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2009, 671, 45-51.	1.0	4
40	Biological effects of mixed-ion beams. Part 1: Effect of irradiation of the CHO-K1 cells with a mixed-ion beam containing the carbon and oxygen ions. Applied Radiation and Isotopes, 2018, 139, 304-309.	1.5	2
41	Dosimetry in radiobiological studies with the heavy ion beam of the Warsaw cyclotron. Nuclear Instruments & Methods in Physics Research B, 2015, 365, 404-408.	1.4	1
42	Analysis of the Biological Response in {CHO-K1} Cells to High LET Radiation. Acta Physica Polonica B, 2014, 45, 553.	0.8	1
43	Structure-activity relationship of polyamine derivatives of 1,3-dichloroacetone-thiosemicarbazone: Induction of metastases and increase in sialylation of murine lymphoma L5178Y-R cells. Chemico-Biological Interactions, 1990, 74, 221-231.	4.0	0
44	Inhibition of poly(ADP-ribose)polymerase does not affect the recombination events in CHO xrs6 and wild type cells. Radiation and Environmental Biophysics, 2006, 45, 277-287.	1.4	0
45	Evaluating the toxicity of selected types of carbon nanomaterials in vitro. Toxicology Letters, 2015, 238, S202.	0.8	0
46	Comparative analysis of toxicity of diesel engine particles generated from the combustion of 1st and 2nd generation biodiesel fuels in vitro. Toxicology Letters, 2016, 259, S73.	0.8	0
47	Biological effects of mixed-ion beams. Part 2: The relative biological effectiveness of CHO-K1 cells irradiated by mixed- and single-ion beams. Applied Radiation and Isotopes. 2019. 150. 192-198.	1.5	0