Thomas Reitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/756810/publications.pdf Version: 2024-02-01

THOMAS PEITZ

#	Article	IF	CITATIONS
1	Priming effects in soils across Europe. Global Change Biology, 2022, 28, 2146-2157.	9.5	22
2	Thresholds of target phosphorus fertility classes in European fertilizer recommendations in relation to critical soil test phosphorus values derived from the analysis of 55 European long-term field experiments. Agriculture, Ecosystems and Environment, 2022, 332, 107926.	5.3	21
3	Designing Synergistic Biostimulants Formulation Containing Autochthonous Phosphate-Solubilizing Bacteria for Sustainable Wheat Production. Frontiers in Microbiology, 2022, 13, 889073.	3.5	8
4	Interactions between soil properties, agricultural management and cultivar type drive structural and functional adaptations of the wheat rhizosphere microbiome to drought. Environmental Microbiology, 2021, 23, 5866-5882.	3.8	36
5	The wheat growth-promoting traits of Ochrobactrum and Pantoea species, responsible for solubilization of different P sources, are ensured by genes encoding enzymes of multiple P-releasing pathways. Microbiological Research, 2021, 246, 126703.	5.3	24
6	Lowâ€intensity landâ€use enhances soil microbial activity, biomass and fungalâ€toâ€bacterial ratio in current and future climates. Journal of Applied Ecology, 2021, 58, 2614-2625.	4.0	15
7	Can We Estimate Functionality of Soil Microbial Communities from Structure-Derived Predictions? A Reality Test in Agricultural Soils. Microbiology Spectrum, 2021, 9, e0027821.	3.0	11
8	Combined effects of land-use type and climate change on soil microbial activity and invertebrate decomposer activity. Agriculture, Ecosystems and Environment, 2021, 318, 107490.	5.3	13
9	Glucose dehydrogenase gene containing phosphobacteria for biofortification of Phosphorus with growth promotion of rice. Microbiological Research, 2019, 223-225, 1-12.	5.3	59
10	Investigating the consequences of climate change under different landâ€use regimes: a novel experimental infrastructure. Ecosphere, 2019, 10, e02635.	2.2	85
11	Extensive grassland-use sustains high levels of soil biological activity, but does not alleviate detrimental climate change effects. Advances in Ecological Research, 2019, , 25-58.	2.7	44
12	Shifts Between and Among Populations of Wheat Rhizosphere Pseudomonas, Streptomyces and Phyllobacterium Suggest Consistent Phosphate Mobilization at Different Wheat Growth Stages Under Abiotic Stress. Frontiers in Microbiology, 2019, 10, 3109.	3.5	25
13	Re-evaluation of the yield response to phosphorus fertilization based on meta-analyses of long-term field experiments. Ambio, 2018, 47, 50-61.	5.5	42
14	Dynamics of Soil Bacterial Communities Over a Vegetation Season Relate to Both Soil Nutrient Status and Plant Growth Phenology. Microbial Ecology, 2018, 75, 216-227.	2.8	42
15	The equivalence of the Calcium-Acetate-Lactate and Double-Lactate extraction methods to assess soil phosphorus fertility. Journal of Plant Nutrition and Soil Science, 2018, 181, 795-801.	1.9	7
16	Mineral vs. Organic Amendments: Microbial Community Structure, Activity and Abundance of Agriculturally Relevant Microbes Are Driven by Long-Term Fertilization Strategies. Frontiers in Microbiology, 2016, 7, 1446.	3.5	462
17	Reinoculation elucidates mechanisms of bacterial community assembly in soil and reveals undetected microbes. Biology and Fertility of Soils, 2016, 52, 1073-1083.	4.3	13
18	Spectroscopic study on uranyl carboxylate complexes formed at the surface layer of Sulfolobus acidocaldarius. Dalton Transactions, 2015, 44, 2684-2692.	3.3	22

#	Article	IF	CITATIONS
19	Influence of Commonly Used Primer Systems on Automated Ribosomal Intergenic Spacer Analysis of Bacterial Communities in Environmental Samples. PLoS ONE, 2015, 10, e0118967.	2.5	18
20	Decrease of U(VI) Immobilization Capability of the Facultative Anaerobic Strain Paenibacillus sp. JG-TB8 under Anoxic Conditions Due to Strongly Reduced Phosphatase Activity. PLoS ONE, 2014, 9, e102447.	2.5	24
21	Interactions of Sulfolobus acidocaldarius with uranium. Radiochimica Acta, 2010, 98, .	1.2	13