
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7567973/publications.pdf Version: 2024-02-01



MAGLIANC

| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Arylamine organic dyes for dye-sensitized solar cells. Chemical Society Reviews, 2013, 42, 3453.                                                                                                                                  | 38.1 | 1,011     |
| 2  | New Triphenylamine-Based Organic Dyes for Efficient Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2007, 111, 4465-4472.                                                                                            | 3.1  | 366       |
| 3  | New Triphenylamine-Based Dyes for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2008, 112, 874-880.                                                                                                                | 3.1  | 334       |
| 4  | Dithieno[3,2- <i>b</i> :2′,3′- <i>d</i> ]pyrrole-based hole transport materials for perovskite solar cells<br>with efficiencies over 18%. Journal of Materials Chemistry A, 2018, 6, 7950-7958.                                   | 10.3 | 122       |
| 5  | Phenylhydrazinium Iodide for Surface Passivation and Defects Suppression in Perovskite Solar Cells.<br>Advanced Functional Materials, 2020, 30, 2000778.                                                                          | 14.9 | 103       |
| 6  | Tuning Hole Transport Layer Using Urea for Highâ€Performance Perovskite Solar Cells. Advanced<br>Functional Materials, 2019, 29, 1806740.                                                                                         | 14.9 | 101       |
| 7  | Kinetics of Iodine-Free Redox Shuttles in Dye-Sensitized Solar Cells: Interfacial Recombination and Dye<br>Regeneration. Accounts of Chemical Research, 2015, 48, 1541-1550.                                                      | 15.6 | 98        |
| 8  | Indeno[1,2â€ <i>b</i> ]carbazole as Methoxyâ€Free Donor Group: Constructing Efficient and Stable<br>Holeâ€Transporting Materials for Perovskite Solar Cells. Angewandte Chemie - International Edition,<br>2019, 58, 15721-15725. | 13.8 | 94        |
| 9  | Significant Enhancement of Open-Circuit Voltage in Indoline-Based Dye-Sensitized Solar Cells via Retarding Charge Recombination. Chemistry of Materials, 2013, 25, 1713-1722.                                                     | 6.7  | 87        |
| 10 | Influence of Nonfused Cores on the Photovoltaic Performance of Linear Triphenylamine-Based<br>Hole-Transporting Materials for Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018,<br>10, 17883-17895.               | 8.0  | 83        |
| 11 | Influence of the Terminal Electron Donor in D–Dâ~ï€â€"A Organic Dye-Sensitized Solar Cells:<br>Dithieno[3,2-b:2′,3′-d]pyrrole versus Bis(amine). ACS Applied Materials & Interfaces, 2015, 7,<br>22436-22447.                     | 8.0  | 80        |
| 12 | Design of Truxene-Based Organic Dyes for High-Efficiency Dye-Sensitized Solar Cells Employing Cobalt<br>Redox Shuttle. Journal of Physical Chemistry C, 2012, 116, 11241-11250.                                                   | 3.1  | 79        |
| 13 | Organic Dyes Incorporating Bis-hexapropyltruxeneamino Moiety for Efficient Dye-Sensitized Solar<br>Cells. Journal of Physical Chemistry C, 2011, 115, 274-281.                                                                    | 3.1  | 78        |
| 14 | Nitrogen-doped graphene as a cathode material for dye-sensitized solar cells: effects of hydrothermal reaction and annealing on electrocatalytic performance. RSC Advances, 2015, 5, 10430-10439.                                 | 3.6  | 74        |
| 15 | New triphenylamine organic dyes containing dithieno[3,2-b:2′,3′-d]pyrrole (DTP) units for iodine-free<br>dye-sensitized solar cells. Chemical Communications, 2013, 49, 5748.                                                     | 4.1  | 71        |
| 16 | Judicious Design of Indoline Chromophores for High-Efficiency Iodine-Free Dye-Sensitized Solar Cells.<br>ACS Applied Materials & Interfaces, 2014, 6, 5768-5778.                                                                  | 8.0  | 56        |
| 17 | Organic dyes containing dithieno[2,3-d:2′,3′-d′]thieno[3,2-b:3′,2′-b′]dipyrrole core for efficient<br>dye-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 4865-4874.                                           | 10.3 | 55        |
| 18 | Efficient dye-sensitized solar cells with triarylamine organic dyes featuring functionalized-truxene<br>unit. Journal of Power Sources, 2011, 196, 1657-1664.                                                                     | 7.8  | 49        |

| #  | Article                                                                                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Organic Dyes Incorporating the Benzo[1,2- <i>b</i> :4,5- <i>b</i> ′]dithiophene Moiety for Efficient<br>Dye-Sensitized Solar Cells. Organic Letters, 2011, 13, 5424-5427.                                                                                                                                                    | 4.6  | 48        |
| 20 | Efficient iodine-free dye-sensitized solar cells employing truxene-based organic dyes. Chemical Communications, 2012, 48, 6645.                                                                                                                                                                                              | 4.1  | 47        |
| 21 | Low-Cost Carbazole-Based Hole-Transporting Materials for Perovskite Solar Cells: Influence of S,N-Heterocycle. Journal of Physical Chemistry C, 2018, 122, 24014-24024.                                                                                                                                                      | 3.1  | 41        |
| 22 | Influence of the N-heterocycle substituent of the dithieno[3,2-b:2′,3′-d]pyrrole (DTP) spacer as well as sensitizer adsorption time on the photovoltaic properties of arylamine organic dyes. Journal of Materials Chemistry A, 2013, 1, 11809.                                                                              | 10.3 | 40        |
| 23 | New Ruthenium Sensitizers Featuring Bulky Ancillary Ligands Combined with a Dual Functioned<br>Coadsorbent for High Efficiency Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces,<br>2013, 5, 144-153.                                                                                                          | 8.0  | 39        |
| 24 | Organic dyes incorporating the cyclopentadithiophene moiety for efficient dye-sensitized solar cells.<br>Dyes and Pigments, 2012, 92, 1292-1299.                                                                                                                                                                             | 3.7  | 37        |
| 25 | A new thermal-stable truxene-based hole-transporting material for perovskite solar cells. Dyes and Pigments, 2016, 125, 399-406.                                                                                                                                                                                             | 3.7  | 36        |
| 26 | Novel Triphenylamine Donors with Carbazole Moieties for Organic Sensitizers toward Cobalt(II/III)<br>Redox Mediators. Organic Letters, 2014, 16, 3978-3981.                                                                                                                                                                  | 4.6  | 35        |
| 27 | Molecularly engineering of truxene-based dopant-free hole-transporting materials for efficient inverted planar perovskite solar cells. Dyes and Pigments, 2019, 165, 81-89.                                                                                                                                                  | 3.7  | 33        |
| 28 | New triarylamine sensitizers for high efficiency dye-sensitized solar cells: Recombination kinetics of cobalt(III) complexes at titania/dye interface. Journal of Power Sources, 2015, 283, 260-269.                                                                                                                         | 7.8  | 32        |
| 29 | Hydrothermal Syntheses, Crystal Structures, Magnetism and Fluorescence Quenching of<br>Oxamidato-Bridged Pentanuclear Cull4LnIII Complexes Containing Macrocyclic Ligands (Ln = Eu, Tb) and<br>the Crystal Structure of a Hexanuclear NiII5SmIII Complex. European Journal of Inorganic Chemistry,<br>2004, 2004, 1514-1521. | 2.0  | 31        |
| 30 | Synthesis and photovoltaic properties of organic sensitizers containing electron-deficient and electron-rich fused thiophene for dye-sensitized solar cells. Tetrahedron, 2012, 68, 5375-5385.                                                                                                                               | 1.9  | 31        |
| 31 | Rearâ€Illuminated Perovskite Photorechargeable Lithium Battery. Advanced Functional Materials, 2020,<br>30, 2001865.                                                                                                                                                                                                         | 14.9 | 31        |
| 32 | Twisted Fused-Ring Thiophene Organic Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2016, 120, 22822-22830.                                                                                                                                                                                                    | 3.1  | 30        |
| 33 | Joint Electrical, Photophysical, and Photovoltaic Studies on Truxene Dye ensitized Solar Cells: Impact<br>of Arylamine Electron Donors. ChemSusChem, 2014, 7, 795-803.                                                                                                                                                       | 6.8  | 29        |
| 34 | Asymmetric 8H-Thieno[2′,3′:4,5]thieno[3,2- <i>b</i> ]thieno[2,3- <i>d</i> ]pyrrole-Based Sensitizers:<br>Synthesis and Application in Dye-Sensitized Solar Cells. Organic Letters, 2017, 19, 3711-3714.                                                                                                                      | 4.6  | 29        |
| 35 | Understanding the Role of Electron Donor in Truxene Dye Sensitized Solar Cells with Cobalt<br>Electrolytes. ACS Sustainable Chemistry and Engineering, 2017, 5, 97-104.                                                                                                                                                      | 6.7  | 29        |
| 36 | Synergistic engineering of hole transport materials in perovskite solar cells. InformaÄnÃ-Materiály,<br>2020, 2, 928-941.                                                                                                                                                                                                    | 17.3 | 29        |

| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Synergistic effect of amide and fluorine of polymers assist stable inverted perovskite solar cells with<br>fill factorÂ>Â83%. Chemical Engineering Journal, 2022, 442, 136136.                                       | 12.7 | 29        |
| 38 | Influence of donor and bridge structure in D–A–π–A indoline dyes on the photovoltaic properties of<br>dye-sensitized solar cells employing iodine/cobalt electrolyte. Dyes and Pigments, 2014, 101, 270-279.         | 3.7  | 28        |
| 39 | The donor-dependent methoxy effects on the performance of hole-transporting materials for perovskite solar cells. Journal of Energy Chemistry, 2020, 47, 10-17.                                                      | 12.9 | 28        |
| 40 | Organic dyes containing indolodithienopyrrole unit for dye-sensitized solar cells. Dyes and Pigments, 2018, 149, 16-24.                                                                                              | 3.7  | 27        |
| 41 | Synthesis of sensitizers containing donor cascade of triarylamine and dimethylarylamine moieties for dye-sensitized solar cells. Tetrahedron, 2010, 66, 3318-3325.                                                   | 1.9  | 25        |
| 42 | Nanoscale control of grain boundary potential barrier, dopant density and filled trap state density<br>for higher efficiency perovskite solar cells. InformaÄnÄ-Materiály, 2020, 2, 409-423.                         | 17.3 | 25        |
| 43 | Coplanar phenanthro[9,10-d]imidazole based hole-transporting material enabling over 19%/21%<br>efficiency in inverted/regular perovskite solar cells. Chemical Engineering Journal, 2021, 421, 129823.               | 12.7 | 25        |
| 44 | Nonideal Charge Recombination and Conduction Band Edge Shifts in Dye-Sensitized Solar Cells Based<br>on Adsorbent Doped Poly(ethylene oxide) Electrolytes. Journal of Physical Chemistry C, 2013, 117,<br>4364-4373. | 3.1  | 24        |
| 45 | New benzothiadiazole-based dyes incorporating dithieno[3,2-b:2′,3′-d]pyrrole (DTP) π-linker for<br>dye-sensitized solar cells with different electrolytes. Journal of Power Sources, 2016, 332, 345-354.             | 7.8  | 24        |
| 46 | The triple π-bridge strategy for tailoring indeno[2,1- <i>b</i> ]carbazole-based HTMs enables perovskite<br>solar cells with efficiency exceeding 21%. Journal of Materials Chemistry A, 2021, 9, 8598-8606.         | 10.3 | 24        |
| 47 | Thieno[3,2- <i>b</i> ]indole-based hole transporting materials for perovskite solar cells with photovoltages exceeding 1.11 V. Chemical Communications, 2018, 54, 14025-14028.                                       | 4.1  | 23        |
| 48 | LiTFSI/TBP-free hole transport materials with nonlinear π-conjugation for efficient inverted perovskite solar cells. Electrochimica Acta, 2019, 296, 283-293.                                                        | 5.2  | 21        |
| 49 | New organic photosensitizers incorporating carbazole and dimethylarylamine moieties for dye-sensitized solar cells. Renewable Energy, 2011, 36, 2711-2716.                                                           | 8.9  | 20        |
| 50 | A Strategy for Enhancing the Performance of Borondipyrromethene Dye-Sensitized Solar Cells.<br>Journal of Physical Chemistry C, 2016, 120, 25657-25667.                                                              | 3.1  | 19        |
| 51 | Organic sensitizers featuring thiophene derivative based donors with improved stability and photovoltaic performance. Physical Chemistry Chemical Physics, 2017, 19, 1927-1936.                                      | 2.8  | 19        |
| 52 | Organic sensitizers featuring 9H-thieno[2′,3':4,5]thieno[3,2-b]thieno[2′,3':4,5]thieno[2,3-d]pyrrole core<br>for high performance dye-sensitized solar cells. Dyes and Pigments, 2019, 162, 126-135.                 | 3.7  | 19        |
| 53 | Syntheses and Structures of two 1-D Complexes, [Co(dmf)2(NCNCN)2] and [Cu(bipy)(NCNCN)]ClO4 with<br>Bridging Dicyanamide Ligands. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2003, 629,<br>2443-2445.       | 1.2  | 18        |
| 54 | A new mixed-ligand copper(II) complex containing azide and 1,10-phenanthroline: crystal structure and properties. Journal of Coordination Chemistry, 2003, 56, 1473-1480.                                            | 2.2  | 18        |

| #  | Article                                                                                                                                                                                                                                                      | IF         | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|
| 55 | Effects of different alkyl chains on the performance of dye-sensitized solar cells with different electrolytes. Journal of Power Sources, 2014, 253, 167-176.                                                                                                | 7.8        | 17        |
| 56 | Noncovalent functionalization of hole-transport materials with multi-walled carbon nanotubes for stable inverted perovskite solar cells. Journal of Materials Chemistry C, 2019, 7, 14306-14313.                                                             | 5.5        | 17        |
| 57 | 2Dâ€Îâ€A Type Organic Dyes Based on <i>N</i> , <i>N</i> â€Dimethylaryl Amine and Rhodamineâ€3â€acetic Acid f<br>Dyeâ€sensitized Solar Cells. Chinese Journal of Chemistry, 2011, 29, 89-96.                                                                  | For<br>4.9 | 16        |
| 58 | Synthesis of triarylamines with secondary electron-donating groups for dye-sensitized solar cells.<br>Solar Energy, 2012, 86, 764-770.                                                                                                                       | 6.1        | 16        |
| 59 | 3,4-Ethylenedioxythiophene as an electron donor to construct arylamine sensitizers for highly efficient iodine-free dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2013, 15, 15441.                                                        | 2.8        | 16        |
| 60 | Correlating hysteresis phenomena with interfacial charge accumulation in perovskite solar cells.<br>Physical Chemistry Chemical Physics, 2020, 22, 245-251.                                                                                                  | 2.8        | 16        |
| 61 | New D–π–A dyes incorporating dithieno[3,2-b:2′,3′-d]pyrrole (DTP)-based π-spacers for efficient<br>dye-sensitized solar cells. RSC Advances, 2017, 7, 45807-45817.                                                                                           | 3.6        | 15        |
| 62 | Indeno[1,2â€ <i>b</i> ]carbazole as Methoxyâ€Free Donor Group: Constructing Efficient and Stable<br>Holeâ€Transporting Materials for Perovskite Solar Cells. Angewandte Chemie, 2019, 131, 15868-15872.                                                      | 2.0        | 15        |
| 63 | Synthesis of new dithieno[3,2-b:2′,3′-d]pyrrole (DTP) dyes for dye-sensitized solar cells: effect of substituent on photovoltaic properties. Tetrahedron, 2016, 72, 3204-3212.                                                                               | 1.9        | 14        |
| 64 | Synthesis of new dithieno[3,2-b:2′,3′-d]pyrrole (DTP) units for photovoltaic cells. Dyes and Pigments, 2016, 128, 8-18.                                                                                                                                      | 3.7        | 14        |
| 65 | New triarylamine organic dyes containing the 9-hexyl-2-(hexyloxy)-9H-carbazole for dye-sensitized solar cells. Electrochimica Acta, 2017, 254, 191-200.                                                                                                      | 5.2        | 14        |
| 66 | A Novel 3-D Heterobimetallic Cyano-bridged Coordination Polymer Incorporating Ag···Ag Interaction:<br>[Cu(dien)Ag(CN)2]2[Ag2(CN)3][Ag(CN)2]. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2004,<br>630, 498-500.                                      | 1.2        | 13        |
| 67 | Insight into the positional effect of bulky rigid substituents in organic sensitizers on the performance of dye-sensitized solar cells. Dyes and Pigments, 2019, 168, 1-11.                                                                                  | 3.7        | 13        |
| 68 | PPh3-KOBut–Mediated Cyclization Reaction of β-Ketoesters with Alkynyl Ketones: Synthesis of<br>Functionalized 2-Pyrones. Synthetic Communications, 2011, 41, 3147-3161.                                                                                      | 2.1        | 12        |
| 69 | Synthesis of new truxene based organic sensitizers for iodine-free dye-sensitized solar cells.<br>Tetrahedron, 2013, 69, 10573-10580.                                                                                                                        | 1.9        | 12        |
| 70 | Facile synthesis of triphenylamine-based hole-transporting materials for planar perovskite solar cells.<br>Journal of Power Sources, 2019, 435, 226767.                                                                                                      | 7.8        | 12        |
| 71 | High performance zinc stannate photoanodes in dye sensitized solar cells with cobalt complex mediators. Chemical Communications, 2020, 56, 5042-5045.                                                                                                        | 4.1        | 11        |
| 72 | Structure and Magnetic Properties of a Novel Two-Dimensional Complex from 1, 3,<br>5-Benzenetricarboxylate and Neodymium(III)— {[Nd(1, 3, 5-benzenetricarboxylate)(H2O)4]· H2O}n.<br>Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2004, 630, 613-616. | 1.2        | 10        |

| #  | Article                                                                                                                                                                                                                                        | IF                 | CITATIONS    |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|
| 73 | Molecular design of triarylamine dyes incorporating phenylene spacer and the influence of alkoxy<br>substituent on the performance of dye-sensitized solar cells. Journal of Photochemistry and<br>Photobiology A: Chemistry, 2011, 225, 8-16. | 3.9                | 10           |
| 74 | Arm modulation of triarylamines to fine-tune the properties of linear D–π–D HTMs for robust higher performance perovskite solar cells. Materials Chemistry Frontiers, 2021, 5, 4604-4614.                                                      | 5.9                | 10           |
| 75 | A Novel, three-dimensional, Tetrachlorophthalato-bridged Samarium(III) complex<br>[Sm(tcph)2(H2O)6]Hpip·5H2O. Journal of Coordination Chemistry, 2004, 57, 275-280.                                                                            | 2.2                | 9            |
| 76 | Charge Transport Limitations of Redox Mediators in Dye-Sensitized Solar Cells: Investigation Based on<br>a Quasi-Linear Model. Journal of Physical Chemistry C, 2014, 118, 60-70.                                                              | 3.1                | 9            |
| 77 | Engineering of the electron donor of triarylamine sensitizers for high-performance dye-sensitized solar cells. Organic Electronics, 2015, 17, 285-294.                                                                                         | 2.6                | 9            |
| 78 | A new binaphthol based hole-transporting materials for perovskite solar cells. Tetrahedron, 2017, 73, 3398-3405.                                                                                                                               | 1.9                | 9            |
| 79 | Judicious design of L(D-Ï€-A)2 type di-anchoring organic sensitizers for highly efficient dye-sensitized<br>solar cells: Effect of the donor-linking bridges on functional properties. Dyes and Pigments, 2021, 187,<br>109134.                | 3.7                | 9            |
| 80 | An efficient dye-sensitized solar cell based on a functionalized-triarylamine dye. Materials Letters, 2011, 65, 1331-1333.                                                                                                                     | 2.6                | 8            |
| 81 | Novel efficient hole-transporting materials based on a 1,1′-bi-2-naphthol core for perovskite solar cells. RSC Advances, 2017, 7, 482-492.                                                                                                     | 3.6                | 8            |
| 82 | Redox couple related influences of bulky electron donor as well as spacer in organic dye-sensitized mesoscopic solar cells. Tetrahedron, 2014, 70, 6203-6210.                                                                                  | 1.9                | 7            |
| 83 | Simple Yet Efficient: Arylamineâ€Terminated Carbazole Donors for Organic Hole Transporting Materials.<br>Solar Rrl, 2021, 5, 2100694.                                                                                                          | 5.8                | 7            |
| 84 | A Multifunctional Fluorinated Polymer Enabling Efficient MAPbl <sub>3</sub> -Based Inverted<br>Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 31285-31295.                                                              | 8.0                | 7            |
| 85 | Synthesis of triarylamine dyes containing secondary electron-donating groups and application in the dye-sensitized solar cells. Synthetic Metals, 2011, 161, 496-503.                                                                          | 3.9                | 6            |
| 86 | Unveiling the Role of Conjugate Bridge in Triphenylamine Hole-Transporting Materials for Inverted and Direct Perovskite Solar Cells. IEEE Journal of Photovoltaics, 2019, 9, 1280-1289.                                                        | 2.5                | 6            |
| 87 | Impact of Interface Energy Alignment on the Dynamic Current–Voltage Response of Perovskite Solar<br>Cells. Journal of Physical Chemistry C, 2020, 124, 12912-12921.                                                                            | 3.1                | 6            |
| 88 | Polymeric hole-transporting material with a flexible backbone for constructing thermally stable inverted perovskite solar cells. Materials Chemistry Frontiers, 2021, 5, 7241-7250.                                                            | 5.9                | 6            |
| 89 | A novel three-dimensional malonate-bridged complex {[Cu4(4,4′-) Tj ETQq1 1 0.784314 rgBT /Overlock 10                                                                                                                                          | Tf 50 102 T<br>2.0 | d (bpy)8(mal |
|    |                                                                                                                                                                                                                                                |                    |              |

90 Selective transformation of carbohydrates to hydroxymethyl furfural with polyaniline-based catalysts. Research on Chemical Intermediates, 2016, 42, 8305-8319.

2.7

4

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Organic sensitizers featuring tetrathienosilole core for efficient and robust dye-sensitized solar cells. Solar Energy, 2021, 221, 402-411.                                                                                              | 6.1 | 4         |
| 92 | Synthesis, crystal structure, spectroscopic and magnetic properties of [Cu(dien)2][Ni(CN)4]. Journal of Coordination Chemistry, 2004, 57, 865-870.                                                                                       | 2.2 | 3         |
| 93 | Influence of Triarylamine and Indoline as Donor on Photovoltaic Performance of Dye-Sensitized Solar<br>Cells Employing Cobalt Redox Shuttle. Chinese Journal of Chemical Physics, 2015, 28, 91-100.                                      | 1.3 | 3         |
| 94 | Unraveling the Nonideal Recombination Kinetics in Cobalt Complex Based Dye Sensitized Solar Cells:<br>Impacts of Electron Lifetime and the Distribution of Electron Density. Journal of Physical Chemistry C,<br>2016, 120, 13891-13900. | 3.1 | 3         |
| 95 | Dopant-free hole-transporting materials based on a simple nonfused core with noncovalent conformational locking for efficient perovskite solar cells. Organic Electronics, 2022, 107, 106566.                                            | 2.6 | 3         |
| 96 | Probing energy losses from dye desorption in cobalt complex-based dye-sensitized solar cells. Physical<br>Chemistry Chemical Physics, 2018, 20, 6698-6707.                                                                               | 2.8 | 2         |
| 97 | The First Hexa-coordinated Tetranuclear Nickel Complex {[Ni(en)2]4[H4L]}(ClO4)4·7H2O with<br>Tetrakis-bidentate Oxamato Bridge. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2004, 630,<br>1655-1658.                             | 1.2 | 1         |
| 98 | Photovoltaic Performance of Triphenylamine Dyesâ€sensitized Solar Cells Employing Cobalt Redox<br>Shuttle and Influence of π onjugated Spacers. Chinese Journal of Chemical Physics, 2013, 26, 310-320.                                  | 1.3 | 1         |
| 99 | Correlating Photovoltaic Performance of Dye-Sensitized Solar Cell to the Film Thickness of Titania via Numerical Drift-Diffusion Simulations. Chinese Journal of Chemical Physics, 2016, 29, 735-741.                                    | 1.3 | 0         |