
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7567917/publications.pdf Version: 2024-02-01

Μομινι Sain

#	Article	IF	CITATIONS
1	Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). Journal of Applied Polymer Science, 2005, 97, 2014-2025.	2.6	712
2	Cellulose microfibrils: A novel method of preparation using high shear refining and cryocrushing. Holzforschung, 2005, 59, 102-107.	1.9	353
3	Injection-molded short hemp fiber/glass fiber-reinforced polypropylene hybrid composites—Mechanical, water absorption and thermal properties. Journal of Applied Polymer Science, 2007, 103, 2432-2441.	2.6	325
4	The effect of morphology and chemical characteristics of cellulose reinforcements on the crystallinity of polylactic acid. Journal of Applied Polymer Science, 2006, 101, 300-310.	2.6	318
5	Study of Structural Morphology of Hemp Fiber from the Micro to the Nanoscale. Applied Composite Materials, 2007, 14, 89-103.	2.5	294
6	Future Perspectives and Review on Organic Carbon Dots in Electronic Applications. ACS Nano, 2019, 13, 6224-6255.	14.6	266
7	Thermal and dynamic mechanical properties of cellulose nanofibers reinforced epoxy composites. International Journal of Biological Macromolecules, 2017, 102, 822-828.	7.5	206
8	Dispersion of soybean stock-based nanofiber in a plastic matrix. Polymer International, 2007, 56, 538-546.	3.1	180
9	Mechanical, morphological and structural properties of cellulose nanofibers reinforced epoxy composites. International Journal of Biological Macromolecules, 2017, 97, 190-200.	7.5	148
10	Selected thermoanalytical methods and their applications from medicine to construction. Journal of Thermal Analysis and Calorimetry, 2007, 90, 653-662.	3.6	117
11	Review on modification strategies of polyethylene/polypropylene immiscible thermoplastic polymer blends for enhancing their mechanical behavior. Journal of Elastomers and Plastics, 2019, 51, 291-336.	1.5	112
12	Modification and Characterization of Hemp and Sisal Fibers. Journal of Natural Fibers, 2014, 11, 144-168.	3.1	111
13	Preparation and Characterization of Sustainable Polyurethane Foams from Soybean Oils. JAOCS, Journal of the American Oil Chemists' Society, 2012, 89, 2103-2111.	1.9	109
14	Measurement and prediction of thermal conductivity for hemp fiber reinforced composites. Polymer Engineering and Science, 2007, 47, 977-983.	3.1	102
15	Effects of clay dispersion on the foam morphology of LDPE/clay nanocomposites. Journal of Applied Polymer Science, 2007, 103, 2129-2134.	2.6	96
16	Synthesis and characterization of an extractive-based bio-epoxy resin from beetle infested Pinus contorta bark. Green Chemistry, 2014, 16, 3483-3493.	9.0	93
17	Effect of coupling agents on rice-husk-filled HDPE extruded profiles. Polymer International, 2005, 54, 137-142.	3.1	79
18	High quantum yield photoluminescent N-doped carbon dots for switch sensing and imaging. Talanta, 2021, 222, 121663.	5.5	71

#	Article	IF	CITATIONS
19	Mechanical, Thermal, and Morphological Properties of Nanocomposites Based on Polyvinyl Alcohol and Cellulose Nanofiber from <i>Aloe vera</i> Rind. Journal of Nanomaterials, 2014, 2014, 1-7.	2.7	70
20	Zwitterions for Organic/Perovskite Solar Cells, Lightâ€Emitting Devices, and Lithium Ion Batteries: Recent Progress and Perspectives. Advanced Energy Materials, 2019, 9, 1803354.	19.5	68
21	Injection Molded Wheat Straw and Corn Stem Filled Polypropylene Composites. Journal of Polymers and the Environment, 2006, 14, 265-272.	5.0	67
22	Thermal properties and spectral characterization of wood pulp reinforced bio-composite fibers. Journal of Thermal Analysis and Calorimetry, 2010, 99, 695-701.	3.6	63
23	Novel bionanocomposites: processing, properties and potential applications. Plastics, Rubber and Composites, 2009, 38, 396-405.	2.0	62
24	Preparation and Characterization of Cellulose Nanofibril Films from Wood Fibre and Their Thermoplastic Polycarbonate Composites. International Journal of Polymer Science, 2012, 2012, 1-6.	2.7	62
25	Water absorption of hemp fiber/unsaturated polyester composites. Polymer Composites, 2005, 26, 509-525.	4.6	61
26	Rheology, thermal properties, and foaming behavior of high <scp>d</scp> -content polylactic acid/cellulose nanofiber composites. RSC Advances, 2015, 5, 91544-91557.	3.6	60
27	Flame retarding effects of nanoclay on wood–fiber composites. Polymer Engineering and Science, 2007, 47, 330-336.	3.1	59
28	Water resistant nanopapers prepared by lactic acid modified cellulose nanofibers. Cellulose, 2018, 25, 259-268.	4.9	59
29	Bacterial cellulose reinforced polyurethane-based resin nanocomposite: A study of how ethanol and processing pressure affect physical, mechanical and dielectric properties. Carbohydrate Polymers, 2012, 87, 2464-2469.	10.2	58
30	Grinding process for the production of nanofibrillated cellulose based on unbleached and bleached bamboo organosolv pulp. Cellulose, 2016, 23, 2971-2987.	4.9	58
31	Understanding the Stress Relaxation Behavior of Polymers Reinforced with Short Elastic Fibers. Materials, 2017, 10, 472.	2.9	57
32	Performance of natural-fiber-plastic composites under stress for outdoor applications: Effect of moisture, temperature, and ultraviolet light exposure. Journal of Applied Polymer Science, 2006, 99, 2570-2577.	2.6	56
33	The effects of clay dispersion on the mechanical, physical, and flameâ€retarding properties of wood fiber/polyethylene/clay nanocomposites. Journal of Applied Polymer Science, 2010, 118, 452-461.	2.6	50
34	Effects of clay dispersion and content on the rheological, mechanical properties, and flame retardance of HDPE/clay nanocomposites. Journal of Applied Polymer Science, 2007, 105, 1993-1999.	2.6	49
35	Characterization of Lignins Isolated from Industrial Residues and their Beneficial Uses. BioResources, 2016, 11, .	1.0	46
36	A review of thermoplastic polymer foams for functional applications. Journal of Materials Science, 2021, 56, 11579-11604.	3.7	46

#	Article	IF	CITATIONS
37	Flexible electrically conductive films based on nanofibrillated cellulose and polythiophene prepared via oxidative polymerization. Carbohydrate Polymers, 2019, 220, 79-85.	10.2	42
38	Variation in Feedstock Wood Chemistry Strongly Influences Biochar Liming Potential. Soil Systems, 2019, 3, 26.	2.6	42
39	High Efficiency Solar Membranes Structurally Designed with 3D Core–2D Shell SiO ₂ @Amino-Carbon Hybrid Advanced Composite for Facile Steam Generation. ACS Applied Materials & Interfaces, 2020, 12, 35493-35501.	8.0	41
40	Carbon Fibers with High Electrical Conductivity: Laser Irradiation of Mesophase Pitch Filaments Obtains High Graphitization Degree. ACS Sustainable Chemistry and Engineering, 2020, 8, 17629-17638.	6.7	40
41	Nanocellulose from Curava Fibers and their Nanocomposites. Molecular Crystals and Liquid Crystals, 2010, 522, 42/[342]-52/[352].	0.9	39
42	Regenerated cellulose fibers as impact modifier in long jute fiber reinforced polypropylene composites: Effect on mechanical properties, morphology, and fiber breakage. Journal of Applied Polymer Science, 2015, 132, .	2.6	39
43	Thermal and Physiochemical Characterization of Lignin Extracted from Wheat Straw by Organosolv Process. Journal of Polymers and the Environment, 2018, 26, 3109-3116.	5.0	38
44	Mechanical properties and foaming behavior of cellulose fiber reinforced highâ€density polyethylene composites. Polymer Engineering and Science, 2009, 49, 2179-2188.	3.1	36
45	Cell interactions and cytotoxic studies of cellulose nanofibers from CurauÃ; natural fibers. Carbohydrate Polymers, 2018, 201, 87-95.	10.2	36
46	The Structure and Mechanical Properties of Cellulose Nanocomposites Prepared by Twin Screw Extrusion. ACS Symposium Series, 2006, , 114-131.	0.5	35
47	Enhancement of Mechanical Properties of Flax-Epoxy Composite with Carbon Fibre Hybridisation for Lightweight Applications. Materials, 2020, 13, 109.	2.9	34
48	Effects of raw fiber materials, fiber content, and coupling agent content on selected properties of polyethylene/wood fiber composites. Polymer Engineering and Science, 2007, 47, 1678-1687.	3.1	33
49	Determination of Fiber Size Distributions of Injection Moulded Polypropylene/Natural Fibers Using Xâ€ r ay Microtomography. Advanced Engineering Materials, 2008, 10, 126-130.	3.5	32
50	Bio-Treatment of Natural Fibers in Isolation of Cellulose Nanofibres: Impact of Pre-Refining of Fibers on Bio-Treatment Efficiency and Nanofiber Yield. Journal of Polymers and the Environment, 2011, 19, 615-621.	5.0	32
51	A review of electro-stimulated gels and their applications: Present state and future perspectives. Materials Science and Engineering C, 2019, 103, 109852.	7.3	30
52	Surface characteristics of untreated and modified hemp fibers. Polymer Engineering and Science, 2006, 46, 269-273.	3.1	29
53	Effect of water absorption, freezing and thawing, and photo-aging on flexural properties of extruded HDPE/rice husk composites. Journal of Applied Polymer Science, 2006, 100, 3619-3625.	2.6	29
54	Recycling of Paper Mill Biosolids: A Review on Current Practices and Emerging Biorefinery Initiatives. Clean - Soil, Air, Water, 2015, 43, 919-926.	1.1	29

#	Article	IF	CITATIONS
55	Hetero-Porous, High-Surface Area Green Carbon Aerogels for the Next-Generation Energy Storage Applications. Nanomaterials, 2021, 11, 653.	4.1	29
56	Hybrid biocomposites with enhanced thermal and mechanical properties for structural applications. Journal of Applied Polymer Science, 2015, 132, .	2.6	28
57	Nanocellulose composites with enhanced interfacial compatibility and mechanical properties using a hybrid-toughened epoxy matrix. Carbohydrate Polymers, 2017, 177, 249-257.	10.2	28
58	The effects of nanoclay on the extrusion foaming of wood fiber/polyethylene nanocomposites. Polymer Engineering and Science, 2011, 51, 1014-1022.	3.1	27
59	<i>Aloe vera</i> rind cellulose nanofibersâ€reinforced films. Journal of Applied Polymer Science, 2014, 131, .	2.6	26
60	Biopolyamide hybrid composites for high performance applications. Journal of Applied Polymer Science, 2016, 133, .	2.6	26
61	Advanced Applications for Lignin Micro- and Nano-based Materials. Current Forestry Reports, 2020, 6, 159-171.	7.4	26
62	Introduction to Cellulose Nanocomposites. ACS Symposium Series, 2006, , 2-8.	0.5	25
63	Effects of Reaction Parameters on the Glycidyl Etherification of Bark Extractives during Bioepoxy Resin Synthesis. ACS Sustainable Chemistry and Engineering, 2016, 4, 1016-1024.	6.7	25
64	Synthesis of Soy-Polyol by Two Step Continuous Route and Development of Soy-Based Polyurethane Foam. Journal of Polymers and the Environment, 2010, 18, 437-442.	5.0	24
65	Porous graphitic biocarbon and reclaimed carbon fiber derived environmentally benign lightweight composites. Science of the Total Environment, 2019, 664, 363-373.	8.0	24
66	Effect of mixing conditions on the morphology and performance of fiber-reinforced polyurethane foam. Journal of Cellular Plastics, 2015, 51, 103-119.	2.4	23
67	Resin-transfer molding of natural fiber-reinforced plastic. I. Kinetic study of an unsaturated polyester resin containing an inhibitor and various promoters. Journal of Applied Polymer Science, 2003, 89, 2553-2561.	2.6	22
68	Mechanical Properties and Morphology of Polylactide Composites with Acrylic Impact Modifier. Journal of Macromolecular Science - Physics, 2011, 50, 2070-2083.	1.0	22
69	Development of high bioâ€content polypropylene composites with different industrial lignins. Polymers for Advanced Technologies, 2019, 30, 70-78.	3.2	22
70	Hybrid Photo- and Thermal Catalyst System for Continuous CO ₂ Reduction. ACS Applied Materials & Interfaces, 2020, 12, 33613-33620.	8.0	22
71	Nanocrystalline Cellulose from Microcrystalline Cellulose of Date Palm Fibers as a Promising Candidate for Bio-Nanocomposites: Isolation and Characterization. Materials, 2021, 14, 5313.	2.9	22
72	Olive fiber reinforced epoxy composites: Dimensional Stability, and mechanical properties. Polymer Composites, 2022, 43, 358-365.	4.6	22

#	Article	IF	CITATIONS
73	Covalently grafted carbon nanotube on bacterial cellulose composite for flexible touch screen application. Materials Letters, 2013, 107, 247-250.	2.6	21
74	Enhancing cell nucleation of thermoplastic polyolefin foam blown with nitrogen. Journal of Applied Polymer Science, 2010, 118, 1691-1703.	2.6	20
75	Topochemistry of cellulose nanofibers resulting from molecular and polymer grafting. Cellulose, 2017, 24, 2139-2152.	4.9	20
76	Properties investigation of recycled polylactic acid reinforced by cellulose nanofibrils isolated from bagasse. Polymer Composites, 2018, 39, 3740-3749.	4.6	18
77	Improving the thermal properties of olive/bamboo fiberâ€based epoxy hybrid composites. Polymer Composites, 2022, 43, 3167-3174.	4.6	18
78	Cellulose Microfibers as Reinforcing Agents for Structural Materials. ACS Symposium Series, 2006, , 169-186.	0.5	17
79	Microwave Assisted Short-Time Alkaline Extraction of Birch Xylan. Journal of Polymers and the Environment, 2013, 21, 917-929.	5.0	16
80	Alkaline extraction of xylan from wood using microwave and conventional heating. Journal of Applied Polymer Science, 2015, 132, .	2.6	16
81	Effect of bismaleimide reactive extrusion on the crystallinity and mechanical performance of poly(lactic acid) green composites. Journal of Applied Polymer Science, 2012, 124, 3013-3023.	2.6	15
82	Effect of Alkyl Phenol from Cashew Nutshell Liquid and Sisal Fiber Reinforcement on Dry Sliding Wear Behavior of Epoxy Resin. Journal of Natural Fibers, 2017, 14, 747-758.	3.1	15
83	Functionally tuned nanolayered graphene as reinforcement of polyethylene nanocomposites for lightweight transportation industry. Carbon, 2020, 169, 99-110.	10.3	15
84	Commercialization of Wheat Straw as Reinforcing Filler for Commodity Thermoplastics. Journal of Natural Fibers, 2009, 6, 83-97.	3.1	14
85	Graphene oxide modification for enhancing high-density polyethylene properties: a comparison between solvent reaction and melt mixing. Journal of Polymer Engineering, 2018, 39, 85-93.	1.4	14
86	Analysis of Ink/Coating Penetration on Paper Surfaces by Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) in Conjunction with Principal Component Analysis (PCA). Journal of Adhesion, 2008, 84, 277-292.	3.0	13
87	Effect of long fiber thermoplastic extrusion process on fiber dispersion and mechanical properties of viscose fiber/polypropylene composites. Polymers for Advanced Technologies, 2016, 27, 685-692.	3.2	13
88	Modeling and Predicting the Stress Relaxation of Composites with Short and Randomly Oriented Fibers. Materials, 2017, 10, 1207.	2.9	13
89	Thermal and Dimensional Stability of Injection-Molded Sisal-Glass Fiber Hybrid PP Biocomposites. Journal of Polymers and the Environment, 2018, 26, 1279-1289.	5.0	13
90	Sustainable and lightweight biopolyamide hybrid composites for greener auto parts. Canadian Journal of Chemical Engineering, 2016, 94, 2052-2060.	1.7	12

#	Article	IF	CITATIONS
91	Cellulose nanofibers from the skin of beavertail cactus, <i><scp>O</scp>puntia basilaris</i> , as reinforcements for polyvinyl alcohol. Journal of Applied Polymer Science, 2015, 132, .	2.6	11
92	Ice-Templating of Lignin and Cellulose Nanofiber-Based Carbon Aerogels: Implications for Energy Storage Applications. ACS Applied Nano Materials, 2022, 5, 7954-7966.	5.0	11
93	Effects of styrene–ethylene–butylene–styrene based additives on the mechanical properties of rice hull/polypropylene composites. Polymer Engineering and Science, 2007, 47, 1148-1155.	3.1	10
94	Wetting behavior of soy-based resin and unsaturated polyester on surface-modified sisal fiber mat. Journal of Reinforced Plastics and Composites, 2015, 34, 807-818.	3.1	10
95	Cytotoxicity studies of membranes made with cellulose nanofibers from fique macrofibers. Journal of Materials Science, 2017, 52, 2581-2590.	3.7	10
96	Cure study of an acrylic resin to develop natural fiber composites. Journal of Applied Polymer Science, 2004, 92, 757-762.	2.6	9
97	Evaluation of the Influence of Fibre Length and Concentration on Mechanical Performance of Hemp Fibre Reinforced Polypropylene Composite. Journal of Natural Fibers, 2006, 2, 67-84.	3.1	9
98	Acoustic, tomographic, and morphological properties of bismaleimide-modified PLA green composites. Journal of Reinforced Plastics and Composites, 2011, 30, 1329-1340.	3.1	9
99	Evaluation of wood composite additives in the mechanical property changes of PE blends. Polymer Composites, 2015, 36, 287-293.	4.6	9
100	Investigating the Mechanical Response of Soy-Based Polyurethane Foams with Glass Fibers under Compression at various Rates. Frontiers in Forests and Global Change, 2015, 34, 281-298.	1.1	9
101	Impact toughness, viscoelastic behavior, and morphology of polypropylene–jute–viscose hybrid composites. Journal of Applied Polymer Science, 2016, 133, .	2.6	9
102	Electrochemical Properties of Biobased Carbon Aerogels Decorated with Graphene Dots Synthesized from Biochar. ACS Applied Electronic Materials, 2021, 3, 4699-4710.	4.3	9
103	Investigation of Structural Changes of Alkaline-extracted Wood Using X-ray Microtomography and X-ray Diffraction: A Comparison of Microwave versus Conventional Method of Extraction. Journal of Wood Chemistry and Technology, 2013, 33, 92-102.	1.7	8
104	Improvement in Compressive Behavior of Alkali-treated Wood Fibre-reinforced Bio-based Polyurethane Foams. Frontiers in Forests and Global Change, 2014, 33, 139-158.	1.1	8
105	Comparison of Enzymatic, Alkaline, and UV/H2O2 Treatments for Extraction of Beetle-Infested Lodgepole Pine (BILP) and Aspen Bark Polyphenolic Extractives. ACS Sustainable Chemistry and Engineering, 2014, 2, 165-172.	6.7	8
106	Highly electroâ€responsive composite gel based on functionally tuned graphene filled polyvinyl chloride. Polymers for Advanced Technologies, 2021, 32, 3679-3688.	3.2	8
107	Biopolymer Substrates in Buccal Drug Delivery: Current Status and Future Trend. Current Medicinal Chemistry, 2020, 27, 1661-1669.	2.4	8
108	Olive Cellulosic Fibre Based Epoxy Composites: Thermal and Dynamic Mechanical Properties. Journal of Natural Fibers, 2022, 19, 12182-12194.	3.1	8

#	Article	IF	CITATIONS
109	Measurement of the Average Permeability of Natural Fibre Mai in Resin Transfer Moulding Application. Polymers and Polymer Composites, 2006, 14, 229-238.	1.9	7
110	Starch-like exopolysaccharide produced by the filamentous fungi Ophiostoma ulmi and O. novo-ulmi. Forest Pathology, 2007, 37, 80-95.	1.1	7
111	One-pot fabrication of flexible and luminescent nanofilm by in-situ radical polymerization of vinyl carbazole on nanofibrillated cellulose. Carbohydrate Polymers, 2021, 262, 117934.	10.2	7
112	Dispersion of Soybean Stock-Based Nanofiber in Plastic Matrix. ACS Symposium Series, 2006, , 187-208.	0.5	6
113	Studies on permeability of sisal fibre mat during thermoset resin filling in vacuum infusion process. Canadian Journal of Chemical Engineering, 2015, 93, 1364-1370.	1.7	6
114	Permeability and mechanical property correlation of bio based epoxy reinforced with unidirectional sisal fiber mat through vacuum infusion molding technique. Polymer Composites, 2017, 38, 2192-2200.	4.6	6
115	A functionalized renewable carbon-based surface for sensor development. Journal of Solid State Electrochemistry, 2021, 25, 1093-1099.	2.5	6
116	A Single Crystal Hybrid Ligand Framework of Copper(II) with Stable Intrinsic Blue-Light Luminescence in Aqueous Solution. Nanomaterials, 2021, 11, 2281.	4.1	6
117	Enzymatic modification of secondary sludge by lipase and laccase to improve the nylon/sludge composite properties. Journal of Reinforced Plastics and Composites, 2012, 31, 179-188.	3.1	5
118	Effect of Common Chemical Treatments on the Process Kinetics and Mechanical Properties of Flax/Epoxy Composites Manufactured by Resin Infusion. Journal of Polymers and the Environment, 2015, 23, 143-155.	5.0	5
119	Mechanical performance of modified Polypropylene/Polyamide matrix reinforced with treated recycled carbon fibers for lightweight applications. Journal of Polymer Research, 2022, 29, 1.	2.4	5
120	Rapid differentiation of <i>Ophiostoma ulmi</i> and <i>Ophiostoma novoâ€ulmi</i> isolates by matrixâ€assistedâ€laserâ€desorption/ionization timeâ€ofâ€flight/timeâ€ofâ€flight mass spectrometry. Forest Pathology, 2010, 40, 1-6.	1.1	4
121	Cure kinetics characterization of soyâ€based epoxy resins for infusion moulding process. Canadian Journal of Chemical Engineering, 2016, 94, 1375-1380.	1.7	4
122	Thermoconformational Behavior of Cellulose Nanofiber Films as a Device Substrate and Their Superior Flexibility and Durability to Glass. ACS Applied Materials & Interfaces, 2021, 13, 40853-40862.	8.0	4
123	Numerical and Experimental Validation of Natural Fiber Orientation in Viscous Fluid of Injection Cavity. Journal of Natural Fibers, 2017, 14, 634-644.	3.1	3
124	Enhancing Mixing and Thermal Management of Recycled Carbon Composite Systems by Torsion-Induced Phase-to-Phase Thermal and Molecular Mobility. Polymers, 2020, 12, 771.	4.5	3
125	Oriented Carbon Fiber Networks by Design from Renewables for Electrochemical Applications. ACS Sustainable Chemistry and Engineering, 2021, 9, 12142-12154.	6.7	3
126	Bark depolymerization during submerged fermentation using monofloral honey, a natural mediator substitute, and integration between laccases vs. bark biopolymers, characterized by Py-GC-MS. RSC Advances, 2015, 5, 14937-14952.	3.6	2

#	Article	IF	CITATIONS
127	The role of nanoclay formations and wood fiber levels on central composite designed polyethylene composites. Journal of Composite Materials, 2015, 49, 1127-1139.	2.4	2
128	Model development for work of fracture of hybrid composites. Journal of Applied Polymer Science, 2017, 134, .	2.6	2
129	Effect of Natural Fiber Network on Permeability and Tensile Strength of Composites through Vacuum Infusion Process. Journal of Natural Fibers, 2017, 14, 278-286.	3.1	2
130	Acoustic Absorption Properties of Polystyreneâ€Pyrolytic Pinus Resinosa Composite Foams Prepared by Torsionâ€Induced Extrusion. Macromolecular Materials and Engineering, 2022, 307, 2100622.	3.6	2
131	Regioselective Protection and Deprotection of Nanocellulose Molecular Design Architecture: Robust Platform for Multifunctional Applications. Biomacromolecules, 2021, , .	5.4	2
132	Molecular design and structural optimization of nanocellulose-based films fabricated via regioselective functionalization for flexible electronics. Chemical Engineering Journal, 2022, 440, 135950.	12.7	2
133	Surface and interface characterization of untreated and SMA Imideâ€treated hemp fiber/acrylic composites. Polymer Composites, 2009, 30, 681-690.	4.6	1
134	Cellulose in Printed Electronics. Materials and Energy, 2014, , 237-252.	2.5	1
135	Preliminary Design and Experimental Investigation of a Novel Pneumatic Conveying Method to Disperse Natural Fibers in Thermoset Polymers. Materials, 2016, 9, 548.	2.9	1
136	Design and Ductile Behavior of Torsion Configurations in Material Extrusion to Enhance Plasticizing and Melting. Polymers, 2021, 13, 3181.	4.5	1
137	Chemical and molecular structure transformations in atomistic conformation of cellulose nanofibers under thermal environment. Npj Materials Degradation, 2022, 6, .	5.8	1
138	Hydrothermally carbonized xylem sap for use in chemosensors, on and off switches, and memory devices. Energy Reports, 2022, 8, 3213-3220.	5.1	1
139	Investigation on correlation between protein content and moisture absorption-desorption rate of protein coating. International Journal of Plastics Technology, 2009, 13, 1-7.	3.1	0
140	Multifunctional nanolayered renewable carbon for electromagnetic interference and energy devices. Materials Today Energy, 2021, 20, 100778.	4.7	0