Leonardo F Ferreira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/756782/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Muscle-derived ROS and thiol regulation in muscle fatigue. Journal of Applied Physiology, 2008, 104, 853-860.	1.2	184
2	Muscle capillary blood flow kinetics estimated from pulmonary O2 uptake and near-infrared spectroscopy. Journal of Applied Physiology, 2005, 98, 1820-1828.	1.2	148
3	Heliox Improves Oxygen Delivery and Utilization during Dynamic Exercise in Patients with Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2009, 179, 1004-1010.	2.5	117
4	Dynamics of noninvasively estimated microvascular O2 extraction during ramp exercise. Journal of Applied Physiology, 2007, 103, 1999-2004.	1.2	102
5	Regulation of NADPH oxidases in skeletal muscle. Free Radical Biology and Medicine, 2016, 98, 18-28.	1.3	101
6	Kinetics of muscle deoxygenation are accelerated at the onset of heavy-intensity exercise in patients with COPD: relationship to central cardiovascular dynamics. Journal of Applied Physiology, 2008, 104, 1341-1350.	1.2	100
7	Loss of the Inducible Hsp70 Delays the Inflammatory Response to Skeletal Muscle Injury and Severely Impairs Muscle Regeneration. PLoS ONE, 2013, 8, e62687.	1.1	96
8	HDAC1 activates FoxO and is both sufficient and required for skeletal muscle atrophy. Journal of Cell Science, 2014, 127, 1441-53.	1.2	95
9	Diaphragm and ventilatory dysfunction during cancer cachexia. FASEB Journal, 2013, 27, 2600-2610.	0.2	90
10	Genome-wide identification of FoxO-dependent gene networks in skeletal muscle during C26 cancer cachexia. BMC Cancer, 2014, 14, 997.	1.1	88
11	Doxorubicin acts through tumor necrosis factor receptor subtype 1 to cause dysfunction of murine skeletal muscle. Journal of Applied Physiology, 2009, 107, 1935-1942.	1.2	84
12	Human femoral artery and estimated muscle capillary blood flow kinetics following the onset of exercise. Experimental Physiology, 2006, 91, 661-671.	0.9	83
13	Blood flow and O2 extraction as a function of O2 uptake in muscles composed of different fiber types. Respiratory Physiology and Neurobiology, 2006, 153, 237-249.	0.7	79
14	Diaphragm abnormalities in heart failure and aging: mechanisms and integration of cardiovascular and respiratory pathophysiology. Heart Failure Reviews, 2017, 22, 191-207.	1.7	78
15	Effects of assuming constant optical scattering on measurements of muscle oxygenation by near-infrared spectroscopy during exercise. Journal of Applied Physiology, 2007, 102, 358-367.	1.2	76
16	Mechanical Properties of Respiratory Muscles. , 2013, 3, 1533-1567.		70
17	Uremic metabolites impair skeletal muscle mitochondrial energetics through disruption of the electron transport system and matrix dehydrogenase activity. American Journal of Physiology - Cell Physiology, 2019, 317, C701-C713.	2.1	66
18	Muscle blood flow–O2 uptake interaction and their relation to on-exercise dynamics of O2 exchange. Respiratory Physiology and Neurobiology, 2005, 147, 91-103.	0.7	60

#	Article	IF	CITATIONS
19	Bronchodilators accelerate the dynamics of muscle O2 delivery and utilisation during exercise in COPD. Thorax, 2010, 65, 588-593.	2.7	56
20	Kinetics of muscle deoxygenation and microvascular P <scp>o</scp> ₂ during contractions in rat: comparison of optical spectroscopy and phosphorescence-quenching techniques. Journal of Applied Physiology, 2012, 112, 26-32.	1.2	55
21	Impaired muscle mitochondrial energetics is associated with uremic metabolite accumulation in chronic kidney disease. JCI Insight, 2021, 6, .	2.3	47
22	The Final Frontier. Exercise and Sport Sciences Reviews, 2007, 35, 166-173.	1.6	46
23	Phrenic Nerve Stimulation Increases Human Diaphragm Fiber Force after Cardiothoracic Surgery. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 837-839.	2.5	46
24	Sphingomyelinase stimulates oxidant signaling to weaken skeletal muscle and promote fatigue. American Journal of Physiology - Cell Physiology, 2010, 299, C552-C560.	2.1	44
25	Effects of pedal frequency on estimated muscle microvascular O2 extraction. European Journal of Applied Physiology, 2006, 96, 558-563.	1.2	43
26	The effects of aging on capillary hemodynamics in contracting rat spinotrapezius muscle. Microvascular Research, 2009, 77, 113-119.	1.1	43
27	Kinetics of estimated human muscle capillary blood flow during recovery from exercise. Experimental Physiology, 2005, 90, 715-726.	0.9	42
28	N-Acetylcysteine in Handgrip Exercise: Plasma Thiols and Adverse Reactions. International Journal of Sport Nutrition and Exercise Metabolism, 2011, 21, 146-154.	1.0	39
29	Diaphragm dysfunction in heart failure is accompanied by increases in neutral sphingomyelinase activity and ceramide content. European Journal of Heart Failure, 2014, 16, 519-525.	2.9	38
30	Pharmacological targeting of mitochondrial reactive oxygen species counteracts diaphragm weakness in chronic heart failure. Journal of Applied Physiology, 2016, 120, 733-742.	1.2	37
31	NAD(P)H oxidase subunit p47 ^{phox} is elevated, and p47 ^{phox} knockout prevents diaphragm contractile dysfunction in heart failure. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L497-L505.	1.3	33
32	Temporal profile of rat skeletal muscle capillary haemodynamics during recovery from contractions. Journal of Physiology, 2006, 573, 787-797.	1.3	32
33	An injectable capillary-like microstructured alginate hydrogel improves left ventricular function after myocardial infarction in rats. International Journal of Cardiology, 2016, 220, 149-154.	0.8	31
34	Dynamics of skeletal muscle oxygenation during sequential bouts of moderate exercise. Experimental Physiology, 2005, 90, 393-401.	0.9	30
35	Chronic kidney disease exacerbates ischemic limb myopathy in mice via altered mitochondrial energetics. Scientific Reports, 2019, 9, 15547.	1.6	29
36	Oxygen exchange in muscle of young and old rats: muscle-vascular-pulmonary coupling. Experimental Physiology, 2007, 92, 341-346.	0.9	27

#	Article	IF	CITATIONS
37	Reply to Quaresima and Ferrari. Journal of Applied Physiology, 2009, 107, 372-373.	1.2	27
38	l-2-Oxothiazolidine-4-carboxylate reverses glutathione oxidation and delays fatigue of skeletal muscle in vitro. Journal of Applied Physiology, 2009, 107, 211-216.	1.2	27
39	Sphingomyelinase depresses force and calcium sensitivity of the contractile apparatus in mouse diaphragm muscle fibers. Journal of Applied Physiology, 2012, 112, 1538-1545.	1.2	27
40	Effects of arterial hypotension on microvascular oxygen exchange in contracting skeletal muscle. Journal of Applied Physiology, 2006, 100, 1019-1026.	1.2	26
41	Muscle microvascular hemoglobin concentration and oxygenation within the contraction–relaxation cycle. Respiratory Physiology and Neurobiology, 2008, 160, 131-138.	0.7	24
42	Effects of antioxidants on contracting spinotrapezius muscle microvascular oxygenation and blood flow in aged rats. Journal of Applied Physiology, 2008, 105, 1889-1896.	1.2	24
43	Diaphragm Atrophy and Contractile Dysfunction in a Murine Model of Pulmonary Hypertension. PLoS ONE, 2013, 8, e62702.	1.1	23
44	Aging impacts microvascular oxygen pressures during recovery from contractions in rat skeletal muscle. Respiratory Physiology and Neurobiology, 2009, 169, 315-322.	0.7	21
45	The effects of antioxidants on microvascular oxygenation and blood flow in skeletal muscle of young rats. Experimental Physiology, 2009, 94, 961-971.	0.9	21
46	Advanced aging causes diaphragm functional abnormalities, global proteome remodeling, and loss of mitochondrial cysteine redox flexibility in mice. Experimental Gerontology, 2018, 103, 69-79.	1.2	19
47	Small-hairpin RNA and pharmacological targeting of neutral sphingomyelinase prevent diaphragm weakness in rats with heart failure and reduced ejection fraction. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 316, L679-L690.	1.3	18
48	Frequency-domain characteristics and filtering of blood flow following the onset of exercise: implications for kinetics analysis. Journal of Applied Physiology, 2006, 100, 817-825.	1.2	16
49	Diaphragm dysfunction caused by sphingomyelinase requires the p47phox subunit of NADPH oxidase. Respiratory Physiology and Neurobiology, 2015, 205, 47-52.	0.7	16
50	Matching of blood flow to metabolic rate during recovery from moderate exercise in humans. Experimental Physiology, 2008, 93, 1118-1125.	0.9	14
51	A toast to health and performance! Beetroot juice lowers blood pressure and the O2 cost of exercise. Journal of Applied Physiology, 2011, 110, 585-586.	1.2	14
52	Recovery dynamics of skeletal muscle oxygen uptake during the exercise off-transient. Respiratory Physiology and Neurobiology, 2009, 168, 254-260.	0.7	13
53	Kinetics analysis of muscle arterial–venous O2 difference profile during exercise. Respiratory Physiology and Neurobiology, 2010, 173, 51-57.	0.7	13
54	Effectiveness of Sulfur-Containing Antioxidants in Delaying Skeletal Muscle Fatigue. Medicine and Science in Sports and Exercise, 2011, 43, 1025-1031.	0.2	13

#	Article	IF	CITATIONS
55	Chronic heart failure alters orexin and melanin concentrating hormone but not corticotrophin releasing hormone-related gene expression in the brain of male Lewis rats. Neuropeptides, 2015, 52, 67-72.	0.9	13
56	Diaphragm Abnormalities in Patients with End-Stage Heart Failure: NADPH Oxidase Upregulation and Protein Oxidation. Frontiers in Physiology, 2016, 7, 686.	1.3	13
57	A degradable, bioactive, gelatinized alginate hydrogel to improve stem cell/growth factor delivery and facilitate healing after myocardial infarction. Medical Hypotheses, 2012, 79, 673-677.	0.8	11
58	Diaphragm weakness and proteomics (global and redox) modifications in heart failure with reduced ejection fraction in rats. Journal of Molecular and Cellular Cardiology, 2020, 139, 238-249.	0.9	10
59	Nitric oxide and skeletal muscle contractile function. Nitric Oxide - Biology and Chemistry, 2022, 122-123, 54-61.	1.2	10
60	Mitochondrial respiration and H2O2emission in saponin-permeabilized murine diaphragm fibers: optimization of fiber separation and comparison to limb muscle. American Journal of Physiology - Cell Physiology, 2019, 317, C665-C673.	2.1	9
61	Janus kinase inhibition prevents cancer- and myocardial infarction-mediated diaphragm muscle weakness in mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R707-R710.	0.9	8
62	Osmolality Selectively Offsets the Impact of Hyperthermia on Mouse Skeletal Muscle in vitro. Frontiers in Physiology, 2018, 9, 1496.	1.3	6
63	Mitochondrial basis for sex-differences in metabolism and exercise performance. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 314, R848-R849.	0.9	6
64	Dietary nitrate supplementation increases diaphragm peak power in old mice. Journal of Physiology, 2020, 598, 4357-4369.	1.3	6
65	Nox4 Knockout Does Not Prevent Diaphragm Atrophy, Contractile Dysfunction, or Mitochondrial Maladaptation in the Early Phase Post-Myocardial Infarction in Mice. Cellular Physiology and Biochemistry, 2021, 55, 489-504.	1.1	4
66	Skeletal myopathy in a rat model of postmenopausal heart failure with preserved ejection fraction. Journal of Applied Physiology, 2022, 132, 106-125.	1.2	4
67	Meeting Synopsis: Advances in Skeletal Muscle Biology in Health and Disease (Gainesville, Florida,) Tj ETQq1 1 0. Hypertrophy―and "muscle Force, Calcium Handling, and Stress Response― Frontiers in Physiology,	784314 rg 1.3	gBT /Overlock 3
68	Sphingomyelinase and ceramide increase reactive species and depress maximal skeletal muscle force in vitro. FASEB Journal, 2010, 24, 801.16.	0.2	3
69	RNA-sequencing reveals transcriptional signature of pathological remodeling in the diaphragm of rats after myocardial infarction. Gene, 2021, 770, 145356.	1.0	2
70	The impact of hindlimb disuse on sepsisâ€induced myopathy in mice. Physiological Reports, 2021, 9, e14979.	0.7	2
71	Sphingomyelinase promotes atrophy in C2C12 myotubes. FASEB Journal, 2011, 25, lb602.	0.2	1
72	Kinetics of restoration of arteriolar tone after exercise Journal of Applied Physiology, 2005, 99, 775-775.	1.2	0

#	Article	IF	CITATIONS
73	Meeting Synopsis: Advances in Skeletal Muscle Biology in Health and Disease (Gainesville, Florida,) Tj ETQq1 Research― Frontiers in Physiology, 2012, 3, 201.	1 0.784314 1.3	rgBT /Overloc O
74	NIRS-Derived Estimate of Muscle Blood Flow Kinetics During Moderate- and Heavy-Intensity Cycling Exercise. Medicine and Science in Sports and Exercise, 2004, 36, S232.	0.2	0
75	Pedal Frequency Does Not Alter The Cardiac Output. Medicine and Science in Sports and Exercise, 2005, 37, S313.	0.2	0
76	Insulin Sensitivity and Endothelial Function in College-Age Subjects with Family History of Type 2 Diabetes. Medicine and Science in Sports and Exercise, 2006, 38, S572.	0.2	0
77	Heterogeneity of Muscle Deoxygenation Kinetics During Repeated Bouts of Heavy Exercise. Medicine and Science in Sports and Exercise, 2007, 39, S358.	0.2	0
78	The Effects of Aging on Microcirculatory Oxygen Delivery (QO 2) in Contracting Rat Spinotrapezius Muscle. FASEB Journal, 2008, 22, 1141.2.	0.2	0
79	N-acetylcysteine Delays Fatigue of Mouse Diaphragm In Vitro, But Not Soleus or EDL Muscles. Medicine and Science in Sports and Exercise, 2008, 40, S76.	0.2	0
80	Sphingomyelinase depresses force and calcium sensitivity of skeletal muscle contractile apparatus. FASEB Journal, 2011, 25, 1059.19.	0.2	0
81	Cachexia and loss of skeletal muscle mass in a murine model of pulmonary hypertension. FASEB Journal, 2012, 26, 1144.5.	0.2	0
82	Deficiency of p47phox subunit of NADPH oxidase protects skeletal muscle from depression of force stimulated by sphingomyelinase. FASEB Journal, 2012, 26, 1075.10.	0.2	0
83	Heart failure increases neutral sphingomyelinase activity and ceramide content in rat diaphragm. FASEB Journal, 2012, 26, 1075.13.	0.2	0
84	Mechanical ventilation impairs sarcomeric protein function in rat diaphragm single fibers. FASEB Journal, 2013, 27, 939.3.	0.2	0
85	Effect of chronic heart failure on mitochondrial function and apoptotic susceptibility in rat skeletal muscle. FASEB Journal, 2013, 27, 1209.19.	0.2	0
86	Norepinephrine Accelerates Diaphragm Fatigue In Vitro. FASEB Journal, 2013, 27, 942.7.	0.2	0
87	Mitochondriaâ€targeted antioxidant treatment prevents elevation in diaphragm mitochondrial reactive oxygen species and weakness in chronic heart failure. FASEB Journal, 2015, 29, .	0.2	0
88	Integrative Pathophysiology of a Novel Rodent Model of Postmenopausal Heart Failure with Preserved Ejection Fraction. FASEB Journal, 2019, 33, 532.6.	0.2	0
89	Mitochondrial Respiration and H 2 O 2 Emission in Saponinâ€permeabilized Murine Diaphragm Fibers: Optimization of Fiber Separation and Comparison to Limb Muscle. FASEB Journal, 2019, 33, 543.7.	0.2	0
90	Nitrate increases in skeletal muscle peak power do not involve changes in sarcomeric protein phosphorylation and require wholeâ€body physiological pathways. FASEB Journal, 2019, 33, lb651.	0.2	0