Vydianathan Ravi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7567665/publications.pdf

Version: 2024-02-01

42 papers

7,553 citations

236612 25 h-index 243296 44 g-index

48 all docs 48 docs citations

48 times ranked

9837 citing authors

#	Article	IF	CITATIONS
1	The map-based sequence of the rice genome. Nature, 2005, 436, 793-800.	13.7	3,365
2	Elephant shark genome provides unique insights into gnathostome evolution. Nature, 2014, 505, 174-179.	13.7	689
3	The African coelacanth genome provides insights into tetrapod evolution. Nature, 2013, 496, 311-316.	13.7	612
4	The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nature Genetics, 2016, 48, 427-437.	9.4	545
5	An update on chloroplast genomes. Plant Systematics and Evolution, 2008, 271, 101-122.	0.3	277
6	Rapidly evolving fish genomes and teleost diversity. Current Opinion in Genetics and Development, 2008, 18, 544-550.	1.5	219
7	Evidence for at least six Hox clusters in the Japanese lamprey ($\langle i \rangle$ Lethenteron japonicum $\langle l i \rangle$). Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16044-16049.	3.3	202
8	The seahorse genome and the evolution of its specialized morphology. Nature, 2016, 540, 395-399.	13.7	186
9	The sequence of rice chromosomes 11 and 12, rich in disease resistance genes and recent gene duplications. BMC Biology, 2005, 3, 20.	1.7	158
10	Mudskipper genomes provide insights into the terrestrial adaptation of amphibious fishes. Nature Communications, 2014, 5, 5594.	5.8	135
11	The Divergent Genomes of Teleosts. Annual Review of Animal Biosciences, 2018, 6, 47-68.	3.6	134
12	The Asian arowana (Scleropages formosus) genome provides new insights into the evolution of an early lineage of teleosts. Scientific Reports, 2016, 6, 24501.	1.6	89
13	Nanoconfined \hat{l}^2 -Sheets Mechanically Reinforce the Supra-Biomolecular Network of Robust Squid Sucker Ring Teeth. ACS Nano, 2014, 8, 7170-7179.	7.3	88
14	Reconstruction of proto-vertebrate, proto-cyclostome and proto-gnathostome genomes provides new insights into early vertebrate evolution. Nature Communications, 2021, 12, 4489.	5.8	88
15	Elephant shark (<i>Callorhinchus milii</i>) provides insights into the evolution of Hox gene clusters in gnathostomes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16327-16332.	3.3	74
16	Chromosome-level assembly of the horseshoe crab genome provides insights into its genome evolution. Nature Communications, 2020, 11, 2322.	5.8	57
17	The chloroplast genome of mulberry: complete nucleotide sequence, gene organization and comparative analysis. Tree Genetics and Genomes, 2006, 3, 49-59.	0.6	55
18	Structural and functional analysis of rice genome. Journal of Genetics, 2004, 83, 79-99.	0.4	53

#	Article	IF	CITATIONS
19	Sequence analysis of the long arm of rice chromosome 11 for rice?wheat synteny. Functional and Integrative Genomics, 2004, 4, 102-117.	1.4	44
20	Decoding the rice genome. BioEssays, 2006, 28, 421-432.	1.2	44
21	Sequencing of Pax6 Loci from the Elephant Shark Reveals a Family of Pax6 Genes in Vertebrate Genomes, Forged by Ancient Duplications and Divergences. PLoS Genetics, 2013, 9, e1003177.	1.5	40
22	A survey of ancient conserved non-coding elements in the PAX6 locus reveals a landscape of interdigitated cis-regulatory archipelagos. Developmental Biology, 2014, 387, 214-228.	0.9	36
23	An ancient genomic regulatory block conserved across bilaterians and its dismantling in tetrapods by retrogene replacement. Genome Research, 2012, 22, 642-655.	2.4	35
24	The genome of the largest bony fish, ocean sunfish (Mola mola), provides insights into its fast growth rate. GigaScience, 2016, 5, 36.	3.3	32
25	Comparative genomics reveal shared genomic changes in syngnathid fishes and signatures of genetic convergence with placental mammals. National Science Review, 2020, 7, 964-977.	4.6	32
26	Seadragon genome analysis provides insights into its phenotype and sex determination locus. Science Advances, 2021, 7 , .	4.7	32
27	Whole Genome Sequence of the Rifamycin B-Producing Strain Amycolatopsis mediterranei S699. Journal of Bacteriology, 2011, 193, 5562-5563.	1.0	26
28	Lampreys, the jawless vertebrates, contain three Pax6 genes with distinct expression in eye, brain and pancreas. Scientific Reports, 2019, 9, 19559.	1.6	23
29	Repertoire of leaf expressed sequence tags (ESTs) and partial characterization of stress-related and membrane transporter genes from mulberry (Morus indica L.). Tree Genetics and Genomes, 2009, 5, 359-374.	0.6	20
30	Chromosomeâ€level genome assembly of the coastal horseshoe crab (<i>Tachypleus gigas</i>). Molecular Ecology Resources, 2020, 20, 1748-1760.	2.2	20
31	Lampreys, the jawless vertebrates, contain only two ParaHox gene clusters. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9146-9151.	3.3	18
32	Rosales sister to Fabales: Towards resolving the rosid puzzle. Molecular Phylogenetics and Evolution, 2007, 44, 488-493.	1.2	16
33	Discovery of a genetic module essential for assigning left–right asymmetry in humans and ancestral vertebrates. Nature Genetics, 2022, 54, 62-72.	9.4	16
34	A chromosome-level genome assembly of the Asian arowana, Scleropages formosus. Scientific Data, 2016, 3, 160105.	2.4	13
35	Identification of three somatostatin genes in lampreys. General and Comparative Endocrinology, 2016, 237, 89-97.	0.8	13
36	Identification and Comparative Analysis of the Protocadherin Cluster in a Reptile, the Green Anole Lizard. PLoS ONE, 2009, 4, e7614.	1.1	11

#	Article	IF	CITATIONS
37	Conservation as well as divergence in Mcidas function underlies the differentiation of multiciliated cells in vertebrates. Developmental Biology, 2020, 465, 168-177.	0.9	10
38	Cyclostomes Lack Clustered Protocadherins. Molecular Biology and Evolution, 2016, 33, 311-315.	3.5	8
39	Antigen receptor repertoires of one of the smallest known vertebrates. Science Advances, 2021, 7, .	4.7	8
40	Basal Vertebrates Clarify the Evolutionary History of Ciliopathy-Associated Genes Tmem138 and Tmem216. Molecular Biology and Evolution, 2013, 30, 62-65.	3. 5	5
41	On the origin of SCPP genes. Evolution & Development, 2014, 16, 125-126.	1.1	4
42	Carcinoscorpius rotundicauda (mangrove horseshoe crab). Trends in Genetics, 2022, , .	2.9	0