J-P Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7567360/publications.pdf

Version: 2024-02-01

109	2,242	27	43
papers	citations	h-index	g-index
110	110	110	2356 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Comparative study on (Na0.47Bi0.47Ba0.06)0.95A0.05TiO3 (A = $Sr2+/Ca2+$) lead-free ceramics: Scaling behavior of ferroelectric hysteresis loop. Applied Physics Letters, 2022, 120, .	3.3	5
2	Magnetodielectric mechanism and application of magnetoelectric composites. Journal of Magnetism and Magnetic Materials, 2022, 550, 169099.	2.3	9
3	Development of novel KO.8NiO.4Ti1.6O4 nano bamboo leaves, microstructural characterization, double absorption, and photocatalytic removal of organic pollutant. Environmental Research, 2022, 211, 113118.	7.5	3
4	La2Ti2O7 nanosheets synthesized under magnetic field for ofloxacin ferrophotocatalytic degradation. Journal of Environmental Chemical Engineering, 2022, 10, 108088.	6.7	6
5	Direct observation of carrier migration in heterojunctions to discuss the p–n and direct Z-scheme heterojunctions. Nanotechnology, 2022, 33, 425201.	2.6	6
6	First-principles investigation of the structural, elastic, anisotropic and electronic properties of <i>Pmma</i> -carbon. Molecular Physics, 2021, 119, e1809729.	1.7	0
7	Improved ferroelectric and piezoelectric properties of (Na0.5K0.5)NbO ₃ ceramics via sintering in low oxygen partial pressure atmosphere and adding LiF. Journal of Advanced Dielectrics, 2021, 11, 2150012.	2.4	7
8	Facile hydrothermal preparation, characterization and multifunction of rock salt-type LiTiO2. Journal of Alloys and Compounds, 2021, 872, 159759.	5 . 5	8
9	The effects of indium doping on the electrical, magnetic, and magnetodielectric properties of M-type strontium hexaferrites. Journal of Magnetism and Magnetic Materials, 2021, 539, 168333.	2.3	14
10	Charge transfer in SnS ₂ /Na _{0.9} Mg _{0.45} Ti _{3.55} O ₈ heterojunction in photocatalytic process. Nanotechnology, 2021, 32, 025712.	2.6	1
11	Electric and magnetic properties of some magnetodielectric composites at microwave frequency. Journal of Magnetism and Magnetic Materials, 2020, 501, 166410.	2.3	5
12	Temperature-stable dielectric and energy storage properties of (0.94Bi0.47Na0.47Ba0.06TiO3-0.06BiAlO3)–NaNbO3 ceramics. Journal of Alloys and Compounds, 2020, 847, 156409.	5 . 5	15
13	Novel Mg7V4O16(OH)2·H2O and Mg3(VO4)2: preparation, characterization, and performance as lithium-ion anode materials. Journal of Materials Science: Materials in Electronics, 2020, 31, 19931-19942.	2.2	O
14	Mechanical, electronic and thermodynamic properties of TE-C36 under high pressure. Molecular Physics, 2020, 118, e1739769.	1.7	0
15	A first-principles prediction of an sp3 carbon allotrope comprising four-, five-, six-, and eight-member rings. Journal of Applied Physics, 2020, 127, 245112.	2.5	2
16	Na2Fe2Ti6O16 as a hybrid co-catalyst on g-C3N4 to enhance the photocatalytic hydrogen evolution under visible light illumination. Applied Surface Science, 2020, 509, 145357.	6.1	9
17	Comprehensive analysis of direct and converse magnetoelectric effects in S-S mode bilayered composites. Journal of Magnetism and Magnetic Materials, 2020, 501, 166411.	2.3	8
18	Magnetoelectric anisotropy in laminate composite for detecting magnetic field. Functional Materials Letters, 2019, 12, 1850098.	1.2	3

#	Article	IF	CITATIONS
19	Hot-press sintering K0.5Na0.5NbO3–0.5Âmol%Al2O3 ceramics with enhanced ferroelectric and piezoelectric properties. Journal of Materials Science, 2019, 54, 13457-13466.	3.7	15
20	Direct and converse magnetoelectric effects of sandwiched composites worked in shear-shear mode studied by uniform equivalent circuit. AIP Advances, 2019, 9, 105315.	1.3	1
21	Structural, mechanical, and thermodynamic properties of R-3m ReB4 under high pressure. European Physical Journal B, 2019, 92, 1.	1.5	2
22	Twoâ€step hydrothermal fabrication of Na 0.23 TiO 2 nanofibers and enhanced photocatalysis after loaded with gold or silver determined by surface potentials. International Journal of Energy Research, 2019, 43, 4062-4073.	4.5	4
23	Growth of MoS2 nanosheets on TiO2/g-C3N4 nanocomposites to enhance the visible-light photocatalytic ability. Journal of Materials Science: Materials in Electronics, 2019, 30, 5393-5403.	2.2	10
24	Controlled Fabrication of K ₂ Ti ₈ O ₁₇ Nanowires for Highly Efficient and Ultrafast Adsorption toward Methylene Blue. ACS Applied Materials & Diterfaces, 2019, 11, 45531-45545.	8.0	31
25	Morphology and optical studies of Cr doped TiO2 and Mixed-Halide Perovskite coated rutile TiO2 nanorods. Journal of Alloys and Compounds, 2019, 773, 1154-1164.	5.5	15
26	The surface reactivity and structural properties of anatase TiO2 (001), (100), (101) and (105) surface researched with DFT. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2019, 89, 193-197.	1.2	2
27	Comparative study on structure, dielectric, and piezoelectric properties of (Na0.47Bi0.47Ba0.06)0.95A0.05TiO3 (Aâ€=â€Ca2+/Sr2+) ceramics: Effect of radii of A-site cations. Journal of the European Ceramic Society, 2018, 38, 3111-3117.	5.7	33
28	Fabrication and enhanced photocatalytic properties of novel 3D MoS2/Na0.9Mg0.45Ti3.55O8 heterostructures. Applied Surface Science, 2018, 427, 733-741.	6.1	5
29	The enhanced photocatalytic activity of Na0.9 Mg0.45 Ti3.55 O8 co-loaded with silver and platinum. International Journal of Energy Research, 2018, 42, 1056-1065.	4.5	1
30	The effects of magnetic field and polarization on the permeability and permittivity of (1) Tj ETQq0 0 0 rgBT /Over at high frequency. Journal Physics D: Applied Physics, 2018, 51, 055002.	lock 10 Tf 2.8	50 307 Td (8
31	Theoretical and experimental researches on NiS2 nanocubes with uniform reactive exposure facets. Materials Chemistry and Physics, 2018, 207, 194-202.	4.0	10
32	Novel Single-Crystal Hollandite K1.46Fe0.8Ti7.2O16 Microrods: Synthesis, Double Absorption, and Magnetism. Inorganic Chemistry, 2018, 57, 15187-15197.	4.0	18
33	Pressure effect on the mechanical and electronic properties of orthorhombic-C20. Modern Physics Letters B, 2018, 32, 1850380.	1.9	1
34	Plasmon-enhanced photocatalytic activity of Na _{0.9} Mg _{0.45} Ti _{3.55} O ₈ loaded with noble metals directly observed with scanning Kelvin probe microscopy. Nanotechnology, 2018, 29, 305709.	2.6	6
35	Sintering process effect on the BaTiO3 ceramic properties with the hydrothermally prepared powders. Journal of Materials Science: Materials in Electronics, 2018, 29, 14883-14889.	2.2	6
36	Comprehensive investigation on direct and converse magnetoelectric effects in longitudinally magnetized and polarized laminate composites by equivalent circuit and experiments. Journal of Materials Science: Materials in Electronics, 2018, 29, 17706-17713.	2.2	5

#	Article	IF	CITATIONS
37	Synergy of TiO ₂ /Na _{0.23} TiO ₂ Heterojunction for Enhanced Photocatalysis. Crystal Research and Technology, 2018, 53, 1700153.	1.3	6
38	Structural, interfacial, magnetic and dielectric properties of $(1\hat{a}^{3})$ (Mg 0.95 Zn 0.05) 2 (Ti 0.8 Sn 0.2)O 4 @xNi 0.4 Zn 0.6 Fe 2 O 4 composite at high frequency. Ceramics International, 2017, 43, 5427-5433.	4.8	1
39	Novel magnetic properties of uniform NiTe nanorods selectively synthesized by hydrothermal method. Materials and Design, 2017, 117, 390-395.	7.0	19
40	Interface role in the enhanced photocatalytic activity of TiO2-Na0.9Mg0.45Ti3.55O8 nanoheterojunction. APL Materials, 2017, 5, 026104.	5.1	7
41	Novel magnetic properties of CoTe nanorods and diversified CoTe ₂ nanostructures obtained at different NaOH concentrations. Science and Technology of Advanced Materials, 2017, 18, 325-333.	6.1	29
42	One-step synthesis of NiTe ₂ nanorods coated with few-layers MoS ₂ for enhancing photocatalytic activity. Nanotechnology, 2017, 28, 495602.	2.6	30
43	Novel magnetic semiconductor Na ₂ Fe ₂ Ti ₆ O ₁₆ : synthesis, double absorption and strong adsorptive ability. Journal of Materials Chemistry A, 2017, 5, 17589-17600.	10.3	21
44	Dielectric, ferroelectric, piezoelectric properties and impedance analysis of nonstoichiometric (Bi0.5Na0.5)0.94+xBa0.06TiO3 ceramics. Journal of the European Ceramic Society, 2016, 36, 3995-4001.	5.7	76
45	Microstructure and microwave-frequency electromagnetic properties of Ni0.4Zn0.6Fe2O4/Ba0.6Sr0.4TiO3 composites. Ceramics International, 2016, 42, 15585-15591.	4.8	9
46	Microstructure and Electrical Properties of Nonstoichiometric 0.94(Na _{0.5} Bi _{0.5+<i>x</i>})TiO ₃ â€"0.06BaTiO ₃ Leadâ€Free Ceramics. Journal of the American Ceramic Society, 2016, 99, 198-205.	3.8	94
47	First-principles study of the electronic structure of nonmetal-doped anatase TiO2. Journal of the Korean Physical Society, 2016, 68, 409-414.	0.7	8
48	Symmetric relationships between direct and converse magnetoelectric effects in laminate composites. Composite Structures, 2016, 155, 107-117.	5.8	18
49	Origin of Large Phase Shift and Magnetoelectric Resonance in Magnetoelectric Laminate Composite. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	4
50	Microwave dielectric properties of low temperature sintering Ca5Mn4(VO4)6 ceramics. Journal of Materials Science: Materials in Electronics, 2016, 27, 7292-7296.	2,2	22
51	Structure, dielectric and piezoelectric properties of (Pb0.945Bi0.027La0.01)(Nb0.95Ti0.0625)2O6 piezoelectric ceramics with high Curie temperature: effect of sintering atmospheres. Journal of Materials Science: Materials in Electronics, 2016, 27, 760-766.	2.2	5
52	Effects of In Situ Heat Treatment on the Microstructure and Electronic Properties of Ba _{0.6} Sr _{TiO_{TiO_{Thin Films. Ferroelectrics, 2016, 491, 134-142.}}}	0.6	2
53	Influence of zinc concentration on structure, complex permittivity and permeability of Ni–Zn ferrites at high frequency. Journal of Magnetism and Magnetic Materials, 2016, 401, 370-377.	2.3	69
54	Novel behaviors of single-crystalline BiFeO ₃ nanorods hydrothermally synthesized under magnetic field. Journal of Materials Chemistry C, 2015, 3, 6924-6931.	5.5	36

#	Article	IF	Citations
55	Microwave dielectric properties of CaV2O6 ceramics with low dielectric loss. Journal of Materials Science: Materials in Electronics, 2015, 26, 7719-7722.	2.2	21
56	First-principles study of the structures and electronic band properties of Bi2Te3 $\{11\$, 5 $\}$ nanoribbons. AIP Advances, 2015, 5, .	1.3	7
57	Electrical, magnetic, and direct and converse magnetoelectric properties of (1â^' x)Pb(Zr 0.52 Ti 0.48)O 3 â^'(x)CoFe 2 O 4 (PZT–CFO) magnetoelectric composites. Journal of Magnetism and Magnetic Materials, 2015, 378, 298-305.	2.3	51
58	A uniform model for direct and converse magnetoelectric effect in laminated composite. Applied Physics Letters, $2014, 104, .$	3.3	36
59	Dielectric, magnetic and magnetoelectric properties of Ni0.5Zn0.5Fe2O4+Pb(Zr0.48Ti0.52)O3 composite ceramics. Ceramics International, 2014, 40, 5853-5860.	4.8	43
60	Ferroelectric, Ferromagnetic, and Magnetoelectric Properties of Multiferroic Ni0.5Zn0.5Fe2O4–BaTiO3 Composite Ceramics. Journal of Electronic Materials, 2014, 43, 1043-1047.	2.2	9
61	Preparation of homogeneous microstructure pure lead metaniobate by two-step sintering. Electronic Materials Letters, 2014, 10, 139-142.	2.2	5
62	A new-type of semiconductor Na0.9Mg0.45Ti3.55O8: preparation, characterization and photocatalysis. Journal of Materials Chemistry A, 2014, 2, 20358-20366.	10.3	24
63	Magnetoelectric effects on ferromagnetic and ferroelectric phase transitions in multiferroic materials. Acta Materialia, 2014, 76, 355-370.	7.9	39
64	Effect of the Second Sintering Temperature on the Microstructure and Electrical Properties of PbNb2O6-0.5Âwt.%ZrO2 Obtained via a Two-Step Sintering Process. Journal of Electronic Materials, 2014, 43, 3630-3634.	2.2	5
65	Enhancing magnetic field sensitivity and giant converse magnetoelectric effect in laminate composite of Terfenol-D and multilayer piezoelectric vibrator. Journal of Alloys and Compounds, 2014, 590, 46-49.	5.5	27
66	Modeling and magnetoelectric properties of laminate composite of nickel plate and piezoelectric multilayer vibrator. EPJ Applied Physics, 2014, 66, 20601.	0.7	3
67	Dielectric and magnetic properties of multiferroic BiFeO3 ceramics sintered with the powders prepared by hydrothermal method. Solid State Sciences, 2013, 19, 117-121.	3.2	31
68	Dielectric, ferromagnetic and maganetoelectric properties of BaTiO3–Ni0.7Zn0.3Fe2O4 composite ceramics. Materials Research Bulletin, 2013, 48, 4100-4104.	5.2	35
69	Magnetodielectric effect and electric-induced magnetic permeability in magnetoelectric laminate composite under low inspiring signal. Journal of Applied Physics, 2013, 113, .	2.5	18
70	Large converse magnetoelectric response in Rosen-type transformer and Terfenol-D laminated composite. Journal of Applied Physics, 2012, 111, .	2.5	12
71	Hydrothermal Synthesis of Perovskite Bismuth Ferrite Crystallites with the Help of NH ₄ Cl. Journal of Nanoscience and Nanotechnology, 2012, 12, 6552-6557.	0.9	9
72	Hydrothermal synthesis and properties of NiFe ₂ O ₄ @BaTiO ₃ composites with well-matched interface. Science and Technology of Advanced Materials, 2012, 13, 045001.	6.1	75

#	Article	IF	CITATIONS
73	Structure and phase transition of BiFeO3 cubic micro-particles prepared by hydrothermal method. Materials Research Bulletin, 2012, 47, 3630-3636.	5.2	30
74	Controlling voltage step-up ratio of Rosen-type transformer based on magnetoelectric coupling. Journal Physics D: Applied Physics, 2011, 44, 055002.	2.8	6
75	Large-scale growth and shape evolution of bismuth ferrite particles with a hydrothermal method. Materials Chemistry and Physics, 2011, 126, 560-567.	4.0	65
76	Preparation of Sb2S3 film on functional organic self-assembled monolayers by chemical bath deposition. Journal of Materials Science, 2011, 46, 700-706.	3.7	6
77	Magnetoelectric coupling in antiferroelectric and magnetic laminate composites. Applied Physics A: Materials Science and Processing, 2011, 104, 461-464.	2.3	7
78	Colossal magnetodielectric effect caused by magnetoelectric effect under low magnetic field. Bulletin of Materials Science, 2011, 34, 283-286.	1.7	13
79	Grain size effect on the dielectric and magnetic properties of NiFe2O4 ceramics. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 43, 1798-1803.	2.7	54
80	Electric-field-induced resonant characteristics in bilayered and trilayered magnetoelectric composites. EPJ Applied Physics, 2010, 49, 30801.	0.7	0
81	Controllable synthesis of PbI2 nanocrystals viaÂaÂsurfactant-assisted hydrothermal route. Applied Physics A: Materials Science and Processing, 2010, 98, 299-304.	2.3	40
82	Synthesis of orthorhombic and cubic PbF2 by hydrothermal method. Journal of Materials Science, 2010, 45, 1846-1853.	3.7	6
83	Magnetoelectric characteristics around resonance frequency under magnetic field in Pb(Zr,) Tj ETQq1 1 0.78431	.4 rgBT /O	verlock 10 Tf
84	Hydrothermal synthesis of perovskite bismuth ferrite crystallites with the help of NH <inf>4</inf> Cl. , 2010, , .		0
85	Colossal dielectric constant and relaxation behaviors in Pr:SrTiO3 ceramics. Journal of Applied Physics, 2010, 107, .	2.5	30
86	Magnetoelectric coupling in small Pb(Zr,Ti)O3/terfenol-D laminate composites. Journal of Applied Physics, 2009, 105, 063913.	2.5	41
87	Hydrothermal synthesis of Pb(ZrO·52TiO·48)O3 powders at low temperature and low alkaline concentration. Bulletin of Materials Science, 2009, 32, 193-197.	1.7	13
88	Dielectric relaxation and giant dielectric constant of Nbâ€doped CaCu ₃ Ti ₄ O ₁₂ ceramics under dc bias voltage. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 562-566.	1.8	16
89	Effects of La on Dielectric and Piezoelectric Properties of Pb _{1â°'x} La _{2x/3} (Nb _{0.95} Ti _{0.0625}) ₂ O ₆ Ceramics. Journal of the American Ceramic Society, 2009, 92, 1753-1757.	3.8	19
90	Magnetic properties of ZnO-doped cobalt ferrite. Journal of Electroceramics, 2008, 21, 681-685.	2.0	12

#	Article	IF	Citations
91	Structure and properties of Zn-doped CoFe2O4 thin films via a sol–gel method. Journal of Electroceramics, 2008, 21, 686-689.	2.0	3
92	Flower-like Pb(Zr0.52Ti0.48)O3 nanoparticles on the CoFe2O4 seeds. Journal of Crystal Growth, 2008, 310, 508-512.	1.5	8
93	Electric and magnetic properties of Pb(Zr0.52Ti0.48)O3–CoFe2O4 particle composite thin film on the SrTiO3 substrate. Materials Research Bulletin, 2008, 43, 3514-3520.	5.2	19
94	Giant electric-field-induced magnetization in a magnetoelectric composite at high frequency. Applied Physics Letters, 2008, 93, 152501.	3.3	28
95	Inhomogeneous magnetoelectric coupling in Pb(Zr,Ti)O3/Terfenol-D laminate composite. Applied Physics Letters, 2008, 92, 062903.	3.3	31
96	Magnetoelectric resonant characteristics in Pb(Zr,Ti)O3/Terfenol-D laminate composites. Journal of Applied Physics, 2008, 103, 103522.	2.5	22
97	Ferroelectric and Ferromagnetic Behavior of Pb(Zr0.52 Ti0.48)O3 -Co0.9 Zn0.1 Fe2 O4 Multilayered Thin Films Prepared via Solution Processing. Advanced Functional Materials, 2007, 17, 1333-1338.	14.9	104
98	Electric and magnetic properties of CoFe2O4/Pb(Zr0.52Ti0.48)O3 bilayer thin films prepared by pulsed-laser deposition. Applied Physics A: Materials Science and Processing, 2007, 89, 553-558.	2.3	18
99	Effects of substrate temperature and oxygen pressure on the magnetic properties and structures of CoFe2O4 thin films prepared by pulsed-laser deposition. Applied Surface Science, 2007, 253, 7456-7460.	6.1	40
100	Dielectric, magnetic, and magnetoelectric properties of laminated PbZr0.52Ti0.48O3â^•CoFe2O4 composite ceramics. Journal of Applied Physics, 2006, 100, 094106.	2.5	112
101	Magnetoelectric CoFe2O4â^•Pb(Zr0.52Ti0.48)O3 double-layer thin film prepared by pulsed-laser deposition. Applied Physics Letters, 2006, 88, 013111.	3.3	150
102	Multiferroic Pb(Zr0.52Ti0.48)O3–Co0.9Zn0.1Fe2O4 bilayer thin films via a solution processing. Applied Physics Letters, 2006, 89, 052904.	3.3	62
103	Anomalous temperature dependence of photoluminescence from stoichiometric GD2O3â°'x film. Journal of Crystal Growth, 2004, 260, 136-142.	1.5	7
104	Properties of high k gate dielectric gadolinium oxide deposited on Si (1 0 0) by dual ion beam deposition (DIBD). Journal of Crystal Growth, 2004, 270, 21-29.	1.5	43
105	Magnetic properties of silicon doped with gadolinium. Applied Physics A: Materials Science and Processing, 2003, 77, 599-602.	2.3	1
106	Photoluminescence behaviors from stoichiometric gadolinium oxide films. Journal of Applied Physics, 2003, 94, 4414-4419.	2.5	4
107	Ambiguities on structure analysis of Fe–N thin films. Journal of Magnetism and Magnetic Materials, 2002, 238, 1-5.	2.3	12
108	GdxSi grown with mass-analyzed low energy dual ion beam epitaxy technique. Journal of Crystal Growth, 2002, 242, 389-394.	1.5	4

#	Article	IF	CITATIONS
109	Structure and soft magnetic properties of Fe-N thin films. IEEE Transactions on Magnetics, 2001, 37, 3844-3849.	2.1	8