Daesik Kim

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7567090/daesik-kim-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

4,950 29 29 22 h-index g-index citations papers 6,227 23.8 5.78 29 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
29	Identifying genome-wide off-target sites of CRISPR RNA-guided nucleases and deaminases with Digenome-seq. <i>Nature Protocols</i> , 2021 , 16, 1170-1192	18.8	4
28	Application of prime editing to the correction of mutations and phenotypes in adult mice with liver and eye diseases. <i>Nature Biomedical Engineering</i> , 2021 ,	19	18
27	Efficient CRISPR editing with a hypercompact Cas12f1 and engineered guide RNAs delivered by adeno-associated virus. <i>Nature Biotechnology</i> , 2021 ,	44.5	13
26	Highly efficient and safe genome editing by CRISPR-Cas12a using CRISPR RNA with a ribosyl-2dO-methylated uridinylate-rich 3doverhang in mouse zygotes. <i>Experimental and Molecular Medicine</i> , 2020 , 52, 1823-1830	12.8	3
25	Protein Kinase A Catalytic Subunit Is a Molecular Switch that Promotes the Pro-tumoral Function of Macrophages. <i>Cell Reports</i> , 2020 , 31, 107643	10.6	5
24	Genome-wide specificity of dCpf1 cytidine base editors. <i>Nature Communications</i> , 2020 , 11, 4072	17.4	7
23	Unbiased investigation of specificities of prime editing systems in human cells. <i>Nucleic Acids Research</i> , 2020 , 48, 10576-10589	20.1	48
22	Evaluating and Enhancing Target Specificity of Gene-Editing Nucleases and Deaminases. <i>Annual Review of Biochemistry</i> , 2019 , 88, 191-220	29.1	69
21	Genome-wide target specificity of CRISPR RNA-guided adenine base editors. <i>Nature Biotechnology</i> , 2019 , 37, 430-435	44.5	98
20	Response to "Unexpected mutations after CRISPR-Cas9 editing in vivo". <i>Nature Methods</i> , 2018 , 15, 239-	2<u>4</u>0 6	22
19	Functional Rescue of Dystrophin Deficiency in Mice Caused by Frameshift Mutations Using Campylobacter jejuni Cas9. <i>Molecular Therapy</i> , 2018 , 26, 1529-1538	11.7	45
18	Long Terminal Repeat CRISPR-CAR-Coupled "Universal" T Cells Mediate Potent Anti-leukemic Effects. <i>Molecular Therapy</i> , 2018 , 26, 1215-1227	11.7	68
17	Directed evolution of CRISPR-Cas9 to increase its specificity. <i>Nature Communications</i> , 2018 , 9, 3048	17.4	220
16	CRISPR-LbCpf1 prevents choroidal neovascularization in a mouse model of age-related macular degeneration. <i>Nature Communications</i> , 2018 , 9, 1855	17.4	52
15	Ma et al. reply. <i>Nature</i> , 2018 , 560, E10-E23	50.4	27
14	DIG-seq: a genome-wide CRISPR off-target profiling method using chromatin DNA. <i>Genome Research</i> , 2018 , 28, 1894-1900	9.7	47
13	Highly efficient genome editing by CRISPR-Cpf1 using CRISPR RNA with a uridinylate-rich 3doverhang. <i>Nature Communications</i> , 2018 , 9, 3651	17.4	81

LIST OF PUBLICATIONS

12	In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. <i>Nature Communications</i> , 2017 , 8, 14500	17.4	368
11	Genome surgery using Cas9 ribonucleoproteins for the treatment of age-related macular degeneration. <i>Genome Research</i> , 2017 , 27, 419-426	9.7	100
10	Highly efficient RNA-guided base editing in mouse embryos. <i>Nature Biotechnology</i> , 2017 , 35, 435-437	44.5	269
9	Genome-wide target specificities of CRISPR RNA-guided programmable deaminases. <i>Nature Biotechnology</i> , 2017 , 35, 475-480	44.5	168
8	Digenome-seq web tool for profiling CRISPR specificity. <i>Nature Methods</i> , 2017 , 14, 548-549	21.6	18
7	Genome editing reveals a role for OCT4 in human embryogenesis. <i>Nature</i> , 2017 , 550, 67-73	50.4	210
6	Correction of a pathogenic gene mutation in human embryos. <i>Nature</i> , 2017 , 548, 413-419	50.4	567
5	Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. <i>Nature Biotechnology</i> , 2016 , 34, 863-8	44.5	445
4	Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-seq. <i>Genome Research</i> , 2016 , 26, 406-15	9.7	141
3	Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. <i>Nature Methods</i> , 2015 , 12, 237-43, 1 p following 243	21.6	652
2	Genotyping with CRISPR-Cas-derived RNA-guided endonucleases. <i>Nature Communications</i> , 2014 , 5, 315	717.4	100
1	Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. <i>Genome Research</i> , 2014 , 24, 1012-9	9.7	1085