Mengning Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/756650/publications.pdf

Version: 2024-02-01

54 papers

6,313 citations

172457 29 h-index 52 g-index

56 all docs

56
docs citations

56 times ranked 10671 citing authors

#	Article	IF	CITATIONS
1	Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature, 2018, 557, 696-700.	27.8	1,279
2	Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science, 2017, 356, 599-604.	12.6	1,229
3	Solution-processable 2D semiconductors for high-performance large-area electronics. Nature, 2018, 562, 254-258.	27.8	644
4	Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nature Catalysis, 2019, 2, 495-503.	34.4	464
5	Toward Barrier Free Contact to Molybdenum Disulfide Using Graphene Electrodes. Nano Letters, 2015, 15, 3030-3034.	9.1	362
6	Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics. Science Advances, 2015, 1, e1500613.	10.3	265
7	van der Waals Heterojunction Devices Based on Organohalide Perovskites and Two-Dimensional Materials. Nano Letters, 2016, 16, 367-373.	9.1	185
8	Silver nanoparticles boost charge-extraction efficiency in <i>Shewanella</i> microbial fuel cells. Science, 2021, 373, 1336-1340.	12.6	171
9	Self-gating in semiconductor electrocatalysis. Nature Materials, 2019, 18, 1098-1104.	27.5	167
10	High Electrical Conductivity in a 2D MOF with Intrinsic Superprotonic Conduction and Interfacial Pseudo-capacitance. Matter, 2020, 2, 711-722.	10.0	115
11	Chemical Sensing with Polyaniline Coated Singleâ€Walled Carbon Nanotubes. Advanced Materials, 2011, 23, 536-540.	21.0	101
12	MoS ₂ -Templated Porous Hollow MoO ₃ Microspheres for Highly Selective Ammonia Sensing via a Lewis Acid-Base Interaction. IEEE Transactions on Industrial Electronics, 2022, 69, 960-970.	7.9	85
13	Understanding Interfaces in Metal–Graphitic Hybrid Nanostructures. Journal of Physical Chemistry Letters, 2013, 4, 147-160.	4.6	79
14	Photoinduced Charge Transfer and Acetone Sensitivity of Single-Walled Carbon Nanotube–Titanium Dioxide Hybrids. Journal of the American Chemical Society, 2013, 135, 9015-9022.	13.7	77
15	Welding of Gold Nanoparticles on Graphitic Templates for Chemical Sensing. Journal of the American Chemical Society, 2012, 134, 3472-3479.	13.7	73
16	In Situ Probing Molecular Intercalation in Two-Dimensional Layered Semiconductors. Nano Letters, 2019, 19, 6819-6826.	9.1	72
17	An on-chip electrical transport spectroscopy approach for in situ monitoring electrochemical interfaces. Nature Communications, 2015, 6, 7867.	12.8	64
18	Quantum interference mediated vertical molecular tunneling transistors. Science Advances, 2018, 4, eaat8237.	10.3	64

#	Article	IF	Citations
19	Cosolvent Approach for Solution-Processable Electronic Thin Films. ACS Nano, 2015, 9, 4398-4405.	14.6	63
20	Doubleâ€Exchangeâ€Induced in situ Conductivity in Nickelâ€Based Oxyhydroxides: An Effective Descriptor for Electrocatalytic Oxygen Evolution. Angewandte Chemie - International Edition, 2021, 60, 16448-16456.	13.8	63
21	Metal-Organic Framework Templated Synthesis of Ultrathin, Well-Aligned Metallic Nanowires. ACS Nano, 2015, 9, 3044-3049.	14.6	59
22	In(III) Metal–Organic Framework Incorporated with Enzyme-Mimicking Nickel Bis(dithiolene) Ligand for Highly Selective CO ₂ Electroreduction. Journal of the American Chemical Society, 2021, 143, 14071-14076.	13.7	54
23	Boosting the performance of single-atom catalysts via external electric field polarization. Nature Communications, 2022, 13, .	12.8	52
24	Nanoelectronic Investigation Reveals the Electrochemical Basis of Electrical Conductivity in <i>Shewanella</i> and <i>Geobacter</i> ACS Nano, 2016, 10, 9919-9926.	14.6	46
25	Vertical Charge Transport and Negative Transconductance in Multilayer Molybdenum Disulfides. Nano Letters, 2017, 17, 5495-5501.	9.1	42
26	Electrochemical Approach for Direct C–H Phosphonylation of Unprotected Secondary Amine. Organic Letters, 2019, 21, 7759-7762.	4.6	36
27	Electroâ€Descriptors for the Performance Prediction of Electroâ€Organic Synthesis. Angewandte Chemie - International Edition, 2021, 60, 4199-4207.	13.8	35
28	Efficient CO ₂ Electroreduction with a Monolayer Bi ₂ WO ₆ through a Metallic Intermediate Surface State. ACS Catalysis, 2021, 11, 12476-12484.	11.2	35
29	Missing-Linker 2D Conductive Metal Organic Frameworks for Rapid Gas Detection. ACS Sensors, 2021, 6, 429-438.	7.8	34
30	Highly selective electrocatalytic oxidation of benzyl C–H using water as safe and sustainable oxygen source. Green Chemistry, 2020, 22, 7543-7551.	9.0	31
31	On-Chip in Situ Monitoring of Competitive Interfacial Anionic Chemisorption as a Descriptor for Oxygen Reduction Kinetics. ACS Central Science, 2018, 4, 590-599.	11.3	29
32	Nitrogen reduction through confined electro-catalysis with carbon nanotube inserted metal–organic frameworks. Journal of Materials Chemistry A, 2021, 9, 1480-1486.	10.3	27
33	Electrochemically Exfoliated Platinum Dichalcogenide Atomic Layers for High-Performance Air-Stable Infrared Photodetectors. ACS Applied Materials & Samp; Interfaces, 2021, 13, 8518-8527.	8.0	23
34	Plasmonic/Nonlinear Optical Material Core/Shell Nanorods as Nanoscale Plasmon Modulators and Optical Voltage Sensors. Angewandte Chemie - International Edition, 2016, 55, 583-587.	13.8	21
35	Selecting Fruits with Carbon Nanotube Sensors. Angewandte Chemie - International Edition, 2012, 51, 7637-7638.	13.8	19
36	Highly Sensitive Chemical Detection with Tunable Sensitivity and Selectivity from Ultrathin Platinum Nanowires. Small, 2017, 13, 1602969.	10.0	19

#	Article	IF	Citations
37	Electrochemical Crossâ€Dehydrogenative Coupling between Phenols and βâ€Dicarbonyl Compounds: Facile Construction of Benzofurans. Chemistry - A European Journal, 2020, 26, 4297-4303.	3.3	18
38	Synthesis of One-Dimensional SiC Nanostructures from a Glassy Buckypaper. ACS Applied Materials & Samp; Interfaces, 2013, 5, 1928-1936.	8.0	16
39	Single-Atom Tailoring of Two-Dimensional Atomic Crystals Enables Highly Efficient Detection and Pattern Recognition of Chemical Vapors. ACS Sensors, 2022, 7, 1533-1543.	7.8	16
40	Electroâ€Descriptors for the Performance Prediction of Electroâ€Organic Synthesis. Angewandte Chemie, 2021, 133, 4245-4253.	2.0	13
41	Rational Synthesis of 1D Hyperbranched Heterostructures with Enhanced Optoelectronic Performance. Angewandte Chemie - International Edition, 2021, 60, 3475-3480.	13.8	12
42	Intercalation and hybrid heterostructure integration of two-dimensional atomic crystals with functional organic semiconductor molecules. Nano Research, 2020, 13, 2917-2924.	10.4	11
43	On-Chip Electrical Transport Investigation of Metal Nanoparticles: Characteristic Acidic and Alkaline Adsorptions Revealed on Pt and Au Surface. Journal of Physical Chemistry Letters, 2020, 11, 5798-5806.	4.6	9
44	Efficient separation of nitrogen-doped carbon nanotube cups. Carbon, 2014, 80, 583-590.	10.3	8
45	Spontaneous Polarity Flipping in a 2D Heterobilayer Induced by Fluctuating Interfacial Carrier Flows. Nano Letters, 2021, 21, 6773-6780.	9.1	7
46	A field-effect approach to directly profiling the localized states in monolayer MoS2. Science Bulletin, 2019, 64, 1049-1055.	9.0	5
47	Promoting Z-to-E Thermal Isomerization of Azobenzene Derivatives by Noncovalent Interaction with Phosphorene: Theoretical Prediction and Experimental Study. Journal of Physical Chemistry C, 2020, 124, 15961-15968.	3.1	3
48	Doubleâ€Exchangeâ€Induced in situ Conductivity in Nickelâ€Based Oxyhydroxides: An Effective Descriptor for Electrocatalytic Oxygen Evolution. Angewandte Chemie, 2021, 133, 16584-16592.	2.0	3
49	Nanocomposite materials for nano-electronic-based Internet of things sensors and energy device signaling., 2020,, 243-290.		2
50	Deactivation/Activation of Quenching Defects in CH3NH3Pbl3 Perovskite by Direct Electron Injection/Extraction. Journal of Physical Chemistry Letters, 2021, 12, 773-780.	4.6	2
51	Quantitative Surface Plasmon Interferometry via Upconversion Photoluminescence Mapping. Research, 2019, 2019, 8304824.	5.7	2
52	Rational Synthesis of 1D Hyperbranched Heterostructures with Enhanced Optoelectronic Performance. Angewandte Chemie, 2021, 133, 3517-3522.	2.0	1
53	Synthesis and Morphology Control of Carbon Nanotube/Polyaniline Composite for Chemical Sensing. Materials Research Society Symposia Proceedings, 2012, 1408, 119.	0.1	0
54	Superlattice Structure from Re-stacked NiFe Layer Double Hydroxides for Oxygen Evolution Reaction. Chemical Research in Chinese Universities, 2020, 36, 680-684.	2.6	0