Stéphane Rondenay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7566431/publications.pdf

Version: 2024-02-01

60 papers

3,960 citations

32 h-index 57 g-index

65 all docs

65 docs citations

65 times ranked 2668 citing authors

#	Article	IF	CITATIONS
1	The crustal structure in the Northwest Atlantic region from receiver function inversion – Implications for basin dynamics and magmatism. Tectonophysics, 2022, 825, 229235.	0.9	3
2	Crustal structure and intraplate seismicity in Nordland, Northern Norway: insight from seismic tomography. Geophysical Journal International, 2022, 230, 813-830.	1.0	6
3	Wavefield Migration Imaging of Moho Geometry and Upper Mantle Structure Beneath Southern New England. Geophysical Research Letters, 2022, 49, .	1.5	4
4	The development of seismic anisotropy below south-central Alaska: evidence from local earthquake shear wave splitting. Geophysical Journal International, 2021, 225, 548-554.	1.0	6
5	Highâ€Resolution Ps Receiver Function Imaging of the Crust and Mantle Lithosphere Beneath Southern New England and Tectonic Implications. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022170.	1.4	9
6	Toward Waveformâ€Based Characterization of Slab & Mantle Wedge (SAM) Earthquakes. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021573.	1.4	0
7	Multimode 3â€D Kirchhoff Migration of Receiver Functions at Continental Scale. Journal of Geophysical Research: Solid Earth, 2019, 124, 8953-8980.	1.4	12
8	A reappraisal of the H–κ stacking technique: implications for global crustal structure. Geophysical Journal International, 2019, 219, 1491-1513.	1.0	36
9	Water Migration in the Subduction Mantle Wedge: A Twoâ€Phase Flow Approach. Journal of Geophysical Research: Solid Earth, 2019, 124, 9208-9225.	1.4	21
10	Variable modification of continental lithosphere during the Proterozoic Grenville orogeny: Evidence from teleseismic P-wave tomography. Earth and Planetary Science Letters, 2019, 525, 115763.	1.8	20
11	Localized crustal deformation along the central North Anatolian Fault Zone revealed by joint inversion of $\langle i \rangle P \langle i \rangle$ -receiver functions and $\langle i \rangle P \langle i \rangle$ -wave polarizations. Geophysical Journal International, 2019, 217, 682-702.	1.0	12
12	Imaging Subduction Beneath Mount St. Helens: Implications for Slab Dehydration and Magma Transport. Geophysical Research Letters, 2019, 46, 3163-3171.	1.5	24
13	Earthquakes track subduction fluids from slab source to mantle wedge sink. Science Advances, 2019, 5, eaav7369.	4.7	54
14	Seismicity, Deformation, and Metamorphism in the Western Hellenic Subduction Zone: New Constraints From Tomography. Journal of Geophysical Research: Solid Earth, 2018, 123, 3000-3026.	1.4	44
15	Constraints on the structure of the crust and lithosphere beneath the Azores Islands from teleseismic receiver functions. Geophysical Journal International, 2018, 213, 824-835.	1.0	19
16	Mantle wedge temperatures and their potential relation to volcanic arc location. Earth and Planetary Science Letters, 2018, 501, 67-77.	1.8	52
17	GLImER: A New Global Database of Teleseismic Receiver Functions for Imaging Earth Structure. Seismological Research Letters, 2017, 88, 39-48.	0.8	15
18	From Relative to Absolute Teleseismic Travel Times: The Absolute Arrivalâ€Time Recovery Method (AARM). Bulletin of the Seismological Society of America, 2017, 107, 2511-2520.	1.1	11

#	Article	IF	Citations
19	Imaging crustal structure beneath the southern Appalachians with wavefield migration. Geophysical Research Letters, 2016, 43, 12,054.	1.5	13
20	Pronounced zonation of seismic anisotropy in the Western Hellenic subduction zone and its geodynamic significance. Earth and Planetary Science Letters, 2014, 391, 100-109.	1.8	33
21	Tube wave to shear wave conversion at borehole plugs. Geophysical Prospecting, 2014, 62, 540-551.	1.0	5
22	Alaska Megathrust 2: Imaging the megathrust zone and Yakutat/Pacific plate interface in the Alaska subduction zone. Journal of Geophysical Research: Solid Earth, 2014, 119, 1924-1941.	1.4	59
23	Pathway from subducting slab to surface for melt and fluids beneath Mount Rainier. Nature, 2014, 511, 338-340.	13.7	133
24	Mapping the Distribution of Fluids in the Crust and Lithospheric Mantle Utilizing Geophysical Methods. Lecture Notes in Earth System Sciences, 2013, , 535-598.	0.5	27
25	Using stochastic crosshole seismic velocity tomography and Bayesian simulation to estimate Ni grades: Case study from Voisey's Bay, Canada. Journal of Applied Geophysics, 2012, 78, 85-93.	0.9	11
26	Seismic investigation of the transition from continental to oceanic subduction along the western Hellenic Subduction Zone. Journal of Geophysical Research, 2012, 117, .	3.3	89
27	Interferometric imaging of the underside of a subducting crust. Geophysical Journal International, 2012, 189, 681-690.	1.0	10
28	Changes in dip of subducted slabs at depth: Petrological and geochronological evidence from HP–UHP rocks (Tianshan, NW-China). Earth and Planetary Science Letters, 2011, 310, 9-20.	1.8	172
29	Shallow structure of the Cascadia subduction zone beneath western Washington from spectral ambient noise correlation. Journal of Geophysical Research, 2011, 116, .	3.3	41
30	<i>SKS</i> and <i>SPdKS</i> sensitivity to twoâ€dimensional ultralowâ€velocity zones. Journal of Geophysical Research, 2010, 115, .	3.3	20
31	Imaging a steeply dipping subducting slab in Southern Central America. Earth and Planetary Science Letters, 2010, 296, 459-468.	1.8	31
32	Geophysical Detection of Relict Metasomatism from an Archean (~3.5 Ga) Subduction Zone. Science, 2009, 326, 1089-1091.	6.0	66
33	Effects of surface scattering in full-waveform inversion. Geophysics, 2009, 74, WCC69-WCC77.	1.4	35
34	Upper Mantle Imaging with Array Recordings of Converted and Scattered Teleseismic Waves. Surveys in Geophysics, 2009, 30, 377-405.	2.1	121
35	High-resolution seismic imaging of the western Hellenic subduction zone using teleseismic scattered waves. Geophysical Journal International, 2009, 178, 775-791.	1.0	69
36	Imaging the source region of Cascadia tremor and intermediate-depth earthquakes. Geology, 2009, 37, 1119-1122.	2.0	112

#	Article	IF	Citations
37	Upper Mantle Imaging with Array Recordings of Converted and Scattered Teleseismic Waves. , 2009, , 109-137.		1
38	Seismic imaging of subduction zone metamorphism. Geology, 2008, 36, 275.	2.0	186
39	Structure of the crust beneath the southeastern Tibetan Plateau from teleseismic receiver functions. Physics of the Earth and Planetary Interiors, 2007, 165, 176-193.	0.7	232
40	<i>P</i> â€toâ€ <i>S</i> and <i>S</i> â€toâ€ <i>P</i> imaging of a sharp lithosphereâ€asthenosphere boundary beneath eastern North America. Journal of Geophysical Research, 2007, 112, .	3.3	151
41	Lithospheric variations across the Superior Province, Ontario, Canada: Evidence from tomography and shear wave splitting. Journal of Geophysical Research, 2007, 112, .	3.3	55
42	New constraints on the upper mantle structure of the Slave craton from Rayleigh wave inversion. Geophysical Research Letters, 2007, 34, .	1.5	38
43	Unusual mantle Poisson's ratio, subduction, and crustal structure in central Alaska. Journal of Geophysical Research, 2006, 111 , .	3.3	73
44	Seismic anisotropy beneath stable continental interiors. Physics of the Earth and Planetary Interiors, 2006, 158, 292-320.	0.7	229
45	A sharp lithosphere–asthenosphere boundary imaged beneath eastern North America. Nature, 2005, 436, 542-545.	13.7	176
46	Multichannel inversion of scattered teleseismic body waves: Practical considerations and applicability. Geophysical Monograph Series, 2005, , 187-203.	0.1	33
47	Mapping the mantle lithosphere for diamond potential using teleseismic methodsâ [*] †. Lithos, 2004, 77, 859-872.	0.6	38
48	Constraints on localized core-mantle boundary structure from multichannel, broadbandSKScoda analysis. Journal of Geophysical Research, 2003, 108, .	3.3	39
49	An inverted continental Moho and serpentinization of the forearc mantle. Nature, 2002, 417, 536-538.	13.7	556
50	Multiparameter two-dimensional inversion of scattered teleseismic body waves 2. Numerical examples. Journal of Geophysical Research, 2001, 106, 30783-30793.	3.3	42
51	Multiparameter two-dimensional inversion of scattered teleseismic body waves 1. Theory for oblique incidence. Journal of Geophysical Research, 2001, 106, 30771-30782.	3.3	142
52	Multiparameter two-dimensional inversion of scattered teleseismic body waves 3. Application to the Cascadia 1993 data set. Journal of Geophysical Research, 2001, 106, 30795-30807.	3.3	128
53	Lithospheric assembly and modification of the SE Canadian Shield: Abitibi-Grenville teleseismic experiment. Journal of Geophysical Research, 2000, 105, 13735-13754.	3.3	76
54	Teleseismic studies of the lithosphere below the Abitibi-Grenville Lithoprobe transect. Canadian Journal of Earth Sciences, 2000, 37, 415-426.	0.6	31

#	Article	IF	CITATIONS
55	Migration of scattered teleseismic body waves. Geophysical Journal International, 1999, 137, 732-746.	1.0	107
56	Seismic and electrical anisotropies in the lithosphere across the Grenville Front, Canada. Geophysical Research Letters, 1996, 23, 2255-2258.	1.5	51
57	Obliquity between seismic and electrical anisotropies as a potential indicator of movement sense for ductile shear zones in the upper mantle. Geology, 1996, 24, 1033.	2.0	69
58	Buried Proterozoic foredeep under the Western Canada Sedimentary Basin?. Geology, 1995, 23, 297.	2.0	26
59	Array-conditioned deconvolution of multiple-component teleseismic recordings. Geophysical Journal International, 0, 182, 967-976.	1.0	20
60	New geophysical insight into the origin of the Denali volcanic gap. Geophysical Journal International, 0, 182, 613-630.	1.0	63