Eric M Dunham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7566198/publications.pdf

Version: 2024-02-01

82 3,662 35
papers citations h-index

58 g-index

97 gall docs ci

97 97
docs citations times ranked

2018 citing authors

#	Article	IF	CITATIONS
1	Communityâ€Driven Code Comparisons for Threeâ€Dimensional Dynamic Modeling of Sequences of Earthquakes and Aseismic Slip. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	27
2	Physicsâ€Based Model Reconciles Caldera Collapse Induced Static and Dynamic Ground Motion: Application to Kīlauea 2018. Geophysical Research Letters, 2022, 49, .	1.5	6
3	Ultra and Very Long Period Seismic Signatures of Unsteady Eruptions Predicted From Conduit Flow Models. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	3
4	Models of Injectionâ€Induced Aseismic Slip on Heightâ€Bounded Faults in the Delaware Basin Constrain Faultâ€Zone Pore Pressure Changes and Permeability. Geophysical Research Letters, 2022, 49, .	1.5	3
5	Elastic wave propagation in anisotropic solids using energy-stable finite differences with weakly enforced boundary and interface conditions. Journal of Computational Physics, 2021, 424, 109842.	1.9	11
6	Effect of Porosity and Permeability Evolution on Injectionâ€Induced Aseismic Slip. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021258.	1.4	25
7	Influence of Shear Heating and Thermomechanical Coupling on Earthquake Sequences and the Brittleâ€Ductile Transition. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021394.	1.4	8
8	Infrasound Radiation From Impulsive Volcanic Eruptions: Nonlinear Aeroacoustic 2D Simulations. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB021940.	1.4	11
9	Acoustic-elastic waveform modeling and inversion using energy-stable summation-by-parts finite-difference operators. , 2021, , .		2
1		_	_
10	3D acoustic-elastic coupling with gravity. , 2021, , .		14
10	3D acoustic-elastic coupling with gravity., 2021,,. Magma Oscillations in a Conduitâ€Reservoir System, Application to Very Long Period (VLP) Seismicity at Basaltic Volcanoes: 1. Theory. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB017437.	1.4	14
	Magma Oscillations in a Conduitâ€Reservoir System, Application to Very Long Period (VLP) Seismicity at	1.4	
11	Magma Oscillations in a Conduitâ€Reservoir System, Application to Very Long Period (VLP) Seismicity at Basaltic Volcanoes: 1. Theory. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB017437. Magma Oscillations in a Conduitâ€Reservoir System, Application to Very Long Period (VLP) Seismicity at Basaltic Volcanoes: 2. Data Inversion and Interpretation at KÄ«lauea Volcano. Journal of Geophysical		8
11 12	Magma Oscillations in a Conduitâ€Reservoir System, Application to Very Long Period (VLP) Seismicity at Basaltic Volcanoes: 1. Theory. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB017437. Magma Oscillations in a Conduitâ€Reservoir System, Application to Very Long Period (VLP) Seismicity at Basaltic Volcanoes: 2. Data Inversion and Interpretation at KÄ«lauea Volcano. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB017456. The State of Stress on the Fault Before, During, and After a Major Earthquake. Annual Review of Earth	1.4	8
11 12 13	Magma Oscillations in a Conduitâ€Reservoir System, Application to Very Long Period (VLP) Seismicity at Basaltic Volcanoes: 1. Theory. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB017437. Magma Oscillations in a Conduitâ€Reservoir System, Application to Very Long Period (VLP) Seismicity at Basaltic Volcanoes: 2. Data Inversion and Interpretation at KÄ«lauea Volcano. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB017456. The State of Stress on the Fault Before, During, and After a Major Earthquake. Annual Review of Earth and Planetary Sciences, 2020, 48, 49-74. Influence of fault roughness on surface displacement: from numerical simulations to coseismic slip	1.4 4.6	8 8 49
11 12 13	Magma Oscillations in a Conduitâ€Reservoir System, Application to Very Long Period (VLP) Seismicity at Basaltic Volcanoes: 1. Theory. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB017437. Magma Oscillations in a Conduitâ€Reservoir System, Application to Very Long Period (VLP) Seismicity at Basaltic Volcanoes: 2. Data Inversion and Interpretation at KÄ«lauea Volcano. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB017456. The State of Stress on the Fault Before, During, and After a Major Earthquake. Annual Review of Earth and Planetary Sciences, 2020, 48, 49-74. Influence of fault roughness on surface displacement: from numerical simulations to coseismic slip distributions. Geophysical Journal International, 2020, 220, 1857-1877. Earthquake Sequence Dynamics at the Interface Between an Elastic Layer and Underlying Halfâ€Space in	1.4 4.6 1.0	8 8 49 26
11 12 13 14	Magma Oscillations in a Conduitâ€Reservoir System, Application to Very Long Period (VLP) Seismicity at Basaltic Volcanoes: 1. Theory. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB017437. Magma Oscillations in a Conduitâ€Reservoir System, Application to Very Long Period (VLP) Seismicity at Basaltic Volcanoes: 2. Data Inversion and Interpretation at KÄ«lauea Volcano. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB017456. The State of Stress on the Fault Before, During, and After a Major Earthquake. Annual Review of Earth and Planetary Sciences, 2020, 48, 49-74. Influence of fault roughness on surface displacement: from numerical simulations to coseismic slip distributions. Geophysical Journal International, 2020, 220, 1857-1877. Earthquake Sequence Dynamics at the Interface Between an Elastic Layer and Underlying Halfâ€6pace in Antiplane Shear. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB020007. Fault valving and pore pressure evolution in simulations of earthquake sequences and aseismic slip.	1.4 4.6 1.0	8 8 49 26

#	Article	IF	Citations
19	Lava lake sloshing modes during the 2018 Kīlauea Volcano eruption probe magma reservoir storativity. Earth and Planetary Science Letters, 2020, 535, 116110.	1.8	8
20	Non-stiff boundary and interface penalties for narrow-stencil finite difference approximations of the Laplacian on curvilinear multiblock grids. Journal of Computational Physics, 2020, 408, 109294.	1.9	12
21	Combining Dynamic Rupture Simulations with Groundâ€Motion Data to Characterize Seismic Hazard from MwA3 to 5.8 Earthquakes in Oklahoma and Kansas. Bulletin of the Seismological Society of America, 2019, 109, 652-671.	1.1	10
22	Dynamic rupture and earthquake sequence simulations using the wave equation in second-order form. Geophysical Journal International, 2019, 219, 796-815.	1.0	11
23	Tsunami Wavefield Reconstruction and Forecasting Using the Ensemble Kalman Filter. Geophysical Research Letters, 2019, 46, 853-860.	1.5	17
24	Poroelastic effects destabilize mildly rate-strengthening friction to generate stable slow slip pulses. Journal of the Mechanics and Physics of Solids, 2019, 130, 262-279.	2.3	27
25	Simulation and inversion of harmonic infrasound from open-vent volcanoes using an efficient quasi-1D crater model. Journal of Volcanology and Geothermal Research, 2019, 380, 64-79.	0.8	20
26	What controls the initial peak of an air-gun source signature?. Geophysics, 2019, 84, P27-P45.	1.4	18
27	Fully Coupled Simulations of Megathrust Earthquakes and Tsunamis in the Japan Trench, Nankai Trough, and Cascadia Subduction Zone. Pure and Applied Geophysics, 2019, 176, 4009-4041.	0.8	34
28	Forecasting the Eruption of an Openâ€Vent Volcano Using Resonant Infrasound Tones. Geophysical Research Letters, 2018, 45, 2213-2220.	1.5	67
29	Earthquake cycle simulations with rate-and-state friction and power-law viscoelasticity. Tectonophysics, 2018, 733, 232-256.	0.9	62
30	A Suite of Exercises for Verifying Dynamic Earthquake Rupture Codes. Seismological Research Letters, 2018, 89, 1146-1162.	0.8	142
31	A finite difference method for earthquake sequences in poroelastic solids. Computational Geosciences, 2018, 22, 1351-1370.	1.2	17
32	Simulation of acoustic and flexural-gravity waves in ice-covered oceans. Journal of Computational Physics, 2018, 373, 230-252.	1.9	7
33	Mach wave properties in the presence of source and medium heterogeneity. Geophysical Journal International, 2018, 214, 2035-2052.	1.0	11
34	Slowâ€slip events on the Whillans Ice Plain, Antarctica, described using rateâ€andâ€state friction as an ice stream sliding law. Journal of Geophysical Research F: Earth Surface, 2017, 122, 973-1003.	1.0	38
35	Hydraulic fracture diagnostics from Krauklis-wave resonance and tube-wave reflections. Geophysics, 2017, 82, D171-D186.	1.4	37
36	Accounting for Fault Roughness in Pseudo-Dynamic Ground-Motion Simulations. Pure and Applied Geophysics, 2017, 174, 3419-3450.	0.8	31

#	Article	IF	Citations
37	Treatment of the polar coordinate singularity in axisymmetric wave propagation using high-order summation-by-parts operators on a staggered grid. Computers and Fluids, 2017, 149, 138-149.	1.3	9
38	Simulation of Wave Propagation Along Fluid-Filled Cracks Using High-Order Summation-by-Parts Operators and Implicit-Explicit Time Stepping. SIAM Journal of Scientific Computing, 2017, 39, B675-B702.	1.3	11
39	A finite difference method for off-fault plasticity throughout the earthquake cycle. Journal of the Mechanics and Physics of Solids, 2017, 109, 50-77.	2.3	48
40	Hydraulic fracture conductivity inferred from tube wave reflections., 2017,,.		7
41	Energy stable and high-order-accurate finite difference methods on staggered grids. Journal of Computational Physics, 2017, 346, 572-589.	1.9	30
42	The effect of compliant prisms on subduction zone earthquakes and tsunamis. Earth and Planetary Science Letters, 2017, 458, 213-222.	1.8	39
43	Using Simulated Ground Motions to Constrain Nearâ€Source Groundâ€Motion Prediction Equations in Areas Experiencing Induced Seismicity. Bulletin of the Seismological Society of America, 2017, 107, 2078-2093.	1.1	5
44	Should tsunami simulations include a nonzero initial horizontal velocity?. Earth, Planets and Space, 2017, 69, .	0.9	28
45	Tremor during ice-stream stick slip. Cryosphere, 2016, 10, 385-399.	1.5	58
46	Excitation and resonance of acoustic-gravity waves in a column of stratified, bubbly magma. Journal of Fluid Mechanics, 2016, 797, 431-470.	1.4	17
47	Rupture complexity and the supershear transition on rough faults. Journal of Geophysical Research: Solid Earth, 2016, 121, 210-224.	1.4	80
48	Dynamic earthquake rupture simulations on nonplanar faults embedded in 3D geometrically complex, heterogeneous elastic solids. Journal of Computational Physics, 2016, 305, 185-207.	1.9	47
49	Nucleation and dynamic rupture on weakly stressed faults sustained by thermal pressurization. Journal of Geophysical Research: Solid Earth, 2015, 120, 7606-7640.	1.4	17
50	Vibrational modes of hydraulic fractures: Inference of fracture geometry from resonant frequencies and attenuation. Journal of Geophysical Research: Solid Earth, 2015, 120, 1080-1107.	1.4	61
51	Rupture dynamics and ground motions from earthquakes in 2â€D heterogeneous media. Geophysical Research Letters, 2015, 42, 1701-1709.	1.5	20
52	High-order finite difference modeling of tsunami generation in a compressible ocean from offshore earthquakes. Computational Geosciences, 2015, 19, 327-340.	1.2	28
53	Simulation of Earthquake Rupture Dynamics in Complex Geometries Using Coupled Finite Difference and Finite Volume Methods. Communications in Computational Physics, 2015, 17, 337-370.	0.7	15
54	A 2D Pseudodynamic Rupture Model Generator for Earthquakes on Geometrically Complex Faults. Bulletin of the Seismological Society of America, 2014, 104, 95-112.	1.1	30

#	Article	IF	CITATIONS
55	Strong Ground Motion Prediction Using Virtual Earthquakes. Science, 2014, 343, 399-403.	6.0	96
56	An efficient numerical method for earthquake cycles in heterogeneous media: Alternating subbasin and surfaceâ€rupturing events on faults crossing a sedimentary basin. Journal of Geophysical Research: Solid Earth, 2014, 119, 3290-3316.	1.4	42
57	Predicting fault damage zones by modeling dynamic rupture propagation and comparison with field observations. Journal of Geophysical Research: Solid Earth, 2014, 119, 1251-1272.	1.4	54
58	Constraining shallow slip and tsunami excitation in megathrust ruptures using seismic and ocean acoustic waves recorded on ocean-bottom sensor networks. Earth and Planetary Science Letters, 2014, 396, 56-65.	1.8	40
59	Simulation of Dynamic Earthquake Ruptures in Complex Geometries Using High-Order Finite Difference Methods. Journal of Scientific Computing, 2013, 55, 92-124.	1.1	77
60	Frictional-faulting model for harmonic tremor before Redoubt Volcano eruptions. Nature Geoscience, 2013, 6, 652-656.	5.4	54
61	Additional shear resistance from fault roughness and stress levels on geometrically complex faults. Journal of Geophysical Research: Solid Earth, 2013, 118, 3642-3654.	1.4	107
62	Rupture to the Trench: Dynamic Rupture Simulations of the 11 March 2011 Tohoku Earthquake. Bulletin of the Seismological Society of America, 2013, 103, 1275-1289.	1.1	132
63	Ground motion prediction of realistic earthquake sources using the ambient seismic field. Journal of Geophysical Research: Solid Earth, 2013, 118, 2102-2118.	1.4	55
64	Guided Waves Along Fluid-Filled Cracks in Elastic Solids and Instability at High Flow Rates. Journal of Applied Mechanics, Transactions ASME, 2012, 79, .	1.1	20
65	Special Issue Honoring Professor James R. Rice. Journal of Applied Mechanics, Transactions ASME, 2012, 79, .	1.1	1
66	Solving the Surface-Wave Eigenproblem with Chebyshev Spectral Collocation. Bulletin of the Seismological Society of America, 2012, 102, 1214-1223.	1.1	28
67	Observation of farâ€field Mach waves generated by the 2001 Kokoxili supershear earthquake. Geophysical Research Letters, 2012, 39, .	1.5	39
68	Interaction of Waves with Frictional Interfaces Using Summation-by-Parts Difference Operators: Weak Enforcement of Nonlinear Boundary Conditions. Journal of Scientific Computing, 2012, 50, 341-367.	1.1	49
69	Earthquake Ruptures with Strongly Rate-Weakening Friction and Off-Fault Plasticity, Part 1: Planar Faults. Bulletin of the Seismological Society of America, 2011, 101, 2296-2307.	1.1	135
70	Earthquake Ruptures with Strongly Rate-Weakening Friction and Off-Fault Plasticity, Part 2: Nonplanar Faults. Bulletin of the Seismological Society of America, 2011, 101, 2308-2322.	1.1	198
71	Verifying a Computational Method for Predicting Extreme Ground Motion. Seismological Research Letters, 2011, 82, 638-644.	0.8	66
72	Coherence of Mach fronts during heterogeneous supershear earthquake rupture propagation: Simulations and comparison with observations. Journal of Geophysical Research, 2010, 115, .	3.3	53

#	Article	IF	CITATIONS
73	The SCEC/USGS Dynamic Earthquake Rupture Code Verification Exercise. Seismological Research Letters, 2009, 80, 119-126.	0.8	210
74	Finite difference modelling of rupture propagation with strong velocity-weakening friction. Geophysical Journal International, 2009, 179, 1831-1858.	1.0	37
75	Earthquake ruptures with thermal weakening and the operation of major faults at low overall stress levels. Journal of Geophysical Research, 2009, 114 , .	3.3	205
76	Attenuation of radiated ground motion and stresses from threeâ€dimensional supershear ruptures. Journal of Geophysical Research, 2008, 113, .	3.3	84
77	Earthquake slip between dissimilar poroelastic materials. Journal of Geophysical Research, 2008, 113, .	3.3	54
78	Conditions governing the occurrence of supershear ruptures under slipâ€weakening friction. Journal of Geophysical Research, 2007, 112, .	3.3	153
79	Dissipative interface waves and the transient response of a three-dimensional sliding interface with Coulomb friction. Journal of the Mechanics and Physics of Solids, 2005, 53, 327-357.	2.3	19
80	Near-source ground motion from steady state dynamic rupture pulses. Geophysical Research Letters, 2005, 32, .	1.5	67
81	Distinguishing barriers and asperities in near-source ground motion. Journal of Geophysical Research, 2005, 110, .	3.3	26
82	A Supershear Transition Mechanism for Cracks. Science, 2003, 299, 1557-1559.	6.0	127