Zhiqiang Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7565948/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Membrane Wrapping Efficiency of Elastic Nanoparticles during Endocytosis: Size and Shape Matter. ACS Nano, 2019, 13, 215-228.	7.3	125
2	Machine-Learning-Assisted De Novo Design of Organic Molecules and Polymers: Opportunities and Challenges. Polymers, 2020, 12, 163.	2.0	95
3	Decorating Nanoparticle Surface for Targeted Drug Delivery: Opportunities and Challenges. Polymers, 2016, 8, 83.	2.0	81
4	Manipulating nanoparticle transport within blood flow through external forces: an exemplar of mechanics in nanomedicine. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, 474, 20170845.	1.0	79
5	Aggregation of polyethylene glycol polymers suppresses receptor-mediated endocytosis of PEGylated liposomes. Nanoscale, 2018, 10, 4545-4560.	2.8	60
6	Understanding receptor-mediated endocytosis of elastic nanoparticles through coarse grained molecular dynamic simulation. Physical Chemistry Chemical Physics, 2018, 20, 16372-16385.	1.3	48
7	Computational modeling of magnetic particle margination within blood flow through LAMMPS. Computational Mechanics, 2018, 62, 457-476.	2.2	36
8	Self-assembly of core-polyethylene glycol-lipid shell (CPLS) nanoparticles and their potential as drug delivery vehicles. Nanoscale, 2016, 8, 14821-14835.	2.8	29
9	Size of graphene sheets determines the structural and mechanical properties of 3D graphene foams. Nanotechnology, 2018, 29, 104001.	1.3	29
10	Self-assembled core–polyethylene glycol–lipid shell nanoparticles demonstrate high stability in shear flow. Physical Chemistry Chemical Physics, 2017, 19, 13294-13306.	1.3	23
11	pH-Dependent aggregation and pH-independent cell membrane adhesion of monolayer-protected mixed charged gold nanoparticles. Nanoscale, 2019, 11, 7371-7385.	2.8	20
12	Interplay of deformability and adhesion on localization of elastic micro-particles in blood flow. Journal of Fluid Mechanics, 2019, 861, 55-87.	1.4	20
13	Carbon Nanotube Length Governs the Viscoelasticity and Permeability of Buckypaper. Polymers, 2017, 9, 115.	2.0	17
14	PEGylated "stealth―nanoparticles and liposomes. , 2018, , 1-26.		17
15	A machine-learning-assisted study of the permeability of small drug-like molecules across lipid membranes. Physical Chemistry Chemical Physics, 2020, 22, 19687-19696.	1.3	17
16	Anomalous Vascular Dynamics of Nanoworms within Blood Flow. ACS Biomaterials Science and Engineering, 2018, 4, 66-77.	2.6	16
17	Cell Stiffness Governs Its Adhesion Dynamics on Substrate Under Shear Flow. IEEE Nanotechnology Magazine, 2018, 17, 407-411.	1.1	15
18	Membrane poration, wrinkling, and compression: deformations of lipid vesicles induced by amphiphilic Janus nanoparticles. Nanoscale, 2020, 12, 20326-20336.	2.8	15

ZHIQIANG SHEN

#	Article	IF	CITATIONS
19	OpenFSI: A highly efficient and portable fluid–structure simulation package based on immersed-boundary method. Computer Physics Communications, 2020, 256, 107463.	3.0	14
20	Cholesterol-like Condensing Effect of Perfluoroalkyl Substances on a Phospholipid Bilayer. Journal of Physical Chemistry B, 2020, 124, 5415-5425.	1.2	13
21	Red blood cell hitchhiking enhances the accumulation of nano- and micro-particles in the constriction of a stenosed microvessel. Soft Matter, 2021, 17, 40-56.	1.2	12
22	Sticky Rouse Time Features the Self-Adhesion of Supramolecular Polymer Networks. Macromolecules, 2021, 54, 5053-5064.	2.2	12
23	What causes the anomalous aggregation in pluronic aqueous solutions?. Soft Matter, 2018, 14, 7653-7663.	1.2	11
24	Super Stretchable and Compressible Hydrogels Inspired by Hook-and-Loop Fasteners. Langmuir, 2021, 37, 7760-7770.	1.6	10
25	Interplay between ligand mobility and nanoparticle geometry during cellular uptake of PEGylated liposomes and bicelles. Nanoscale, 2019, 11, 15971-15983.	2.8	9
26	Effects of Membrane Defects and Polymer Hydrophobicity on Networking Kinetics of Vesicles. Langmuir, 2017, 33, 5745-5751.	1.6	8
27	Shear rate dependent margination of sphere-like, oblate-like and prolate-like micro-particles within blood flow. Soft Matter, 2018, 14, 7401-7419.	1.2	8
28	Polymer stiffness governs template mediated self-assembly of liposome-like nanoparticles: simulation, theory and experiment. Nanoscale, 2019, 11, 20179-20193.	2.8	8
29	Spatiotemporal mapping of mesoscopic liquid dynamics. Physical Review E, 2021, 103, 022609.	0.8	6
30	Spatial correlations of entangled polymer dynamics. Physical Review E, 2021, 104, 024503.	0.8	5
31	Shape-Dependent Transport of Microparticles in Blood Flow: From Margination to Adhesion. Journal of Engineering Mechanics - ASCE, 2019, 145, .	1.6	4
32	20. Multiscale modeling of lipid membrane. , 2019, , 569-602.		0
33	Adhesive rolling of nanoparticles in a lateral flow inspired from diagnostics of COVID-19. Extreme Mechanics Letters, 2021, 44, 101239.	2.0	0
34	Decoding polymer self-dynamics using a two-step approach. Physical Review E, 2022, 106, .	0.8	0