Amod A Ogale

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7565916/publications.pdf Version: 2024-02-01

AMOD A OCALE

#	Article	IF	CITATIONS
1	Study of Droplet Formation Process during Drop-on-Demand Inkjetting of Living Cell-Laden Bioink. Langmuir, 2014, 30, 9130-9138.	1.6	144
2	Carbon fibers from dry-spinning of acetylated softwood kraft lignin. Carbon, 2014, 69, 626-629.	5.4	142
3	Recent advances in carbon fibers derived from biobased precursors. Journal of Applied Polymer Science, 2016, 133, .	1.3	92
4	Carbon Fibers Derived from Fractionated–Solvated Lignin Precursors for Enhanced Mechanical Performance. ACS Sustainable Chemistry and Engineering, 2018, 6, 14135-14142.	3.2	68
5	Study of creep behavior of ultra-high-molecular-weight polyethylene systems. , 1998, 40, 214-223.		60
6	UV assisted stabilization routes for carbon fiber precursors produced from melt-processible polyacrylonitrile terpolymer. Carbon, 2005, 43, 1065-1072.	5.4	57
7	Orientation and dimensional changes in mesophase pitch-based carbon fibers. Carbon, 2002, 40, 1309-1319.	5.4	55
8	Dual curing of carbon fiber reinforced photoresins for rapid prototyping. Polymer Composites, 2002, 23, 1162-1170.	2.3	48
9	Carbon Fibers from UV-Assisted Stabilization of Lignin-Based Precursors. Fibers, 2015, 3, 184-196.	1.8	47
10	Surface and structure modification of carbon nanofibers. Synthetic Metals, 2007, 157, 644-650.	2.1	44
11	Carbon fibers derived from wetâ€spinning of equiâ€component lignin/polyacrylonitrile blends. Journal of Applied Polymer Science, 2018, 135, 45903.	1.3	43
12	Morphological characteristics of stearic acid-grafted starch-compatibilized linear low density polyethylene/thermoplastic starch blown film. European Polymer Journal, 2016, 76, 266-277.	2.6	41
13	Effect of stearic acid-grafted starch compatibilizer on properties of linear low density polyethylene/thermoplastic starch blown film. Carbohydrate Polymers, 2016, 137, 165-173.	5.1	35
14	Online measurements of crystallinity using Raman spectroscopy during blown film extrusion of a linear low-density polyethylene. Polymer Engineering and Science, 2004, 44, 1484-1490.	1.5	33
15	An unexpected particle oscillation for electrophoresis in viscoelastic fluids through a microchannel constriction. Biomicrofluidics, 2014, 8, 021802.	1.2	33
16	Rheostructural studies on a synthetic mesophase pitch during transient shear flow. Carbon, 2006, 44, 2224-2235.	5.4	30
17	Carbon black modification of mesophase pitch-based carbon fibers. Carbon, 2013, 59, 40-48.	5.4	29
18	Effect of heat treatment of carbon nanofibers on the electromagnetic shielding effectiveness of linear low density polyethylene nanocomposites. Polymer Engineering and Science, 2013, 53, 417-423.	1.5	25

Amod A Ogale

#	Article	IF	CITATIONS
19	Adverse effect of mesophase pitch draw-down ratio on carbon fiber strength. Carbon, 2020, 168, 328-336.	5.4	21
20	Realâ€ŧime wideâ€angle Xâ€ray diffraction during polyethylene blown film extrusion. Polymer Engineering and Science, 2008, 48, 1487-1494.	1.5	18
21	Carbon fibers derived from UVâ€assisted stabilization of wetâ€spun polyacrylonitrile fibers. Journal of Applied Polymer Science, 2014, 131, .	1.3	18
22	Effect of temperature and concentration of acetylatedâ€lignin solutions on dryâ€spinning of carbon fiber precursors. Journal of Applied Polymer Science, 2016, 133, .	1.3	18
23	Effect of carbon nanofibers on the anisotropy of an aromatic thermotropic liquid crystalline polymer. Polymer, 2005, 46, 2663-2667.	1.8	17
24	Molecular orientation evolution during lowâ€density polyethylene blown film extrusion using realâ€ŧime Raman spectroscopy. Journal of Raman Spectroscopy, 2009, 40, 212-217.	1.2	16
25	Thermal processing and properties of bioplastic sheets derived from meat and bone meal. Journal of Applied Polymer Science, 2013, 130, 256-263.	1.3	16
26	Realâ€ŧime crystalline orientation measurements during lowâ€density polyethylene blown film extrusion using wideâ€angle Xâ€ray diffraction. Polymer Engineering and Science, 2012, 52, 1532-1536.	1.5	14
27	Transient heat flow in unidirectional fiber–polymer composites during laser flash analysis: Experimental measurements and finite element modeling. Journal of Composite Materials, 2013, 47, 2399-2411.	1.2	14
28	Real-time Raman spectroscopic measurement of crystallization kinetics and its effect on the morphology and properties of polyolefin blown films. Journal of Applied Polymer Science, 2005, 98, 1740-1747.	1.3	13
29	Transient shear rheology and rheo-optical microstructural characterization of a thermotropic liquid crystalline polymer. Polymer Engineering and Science, 2005, 45, 187-197.	1.5	13
30	Rheostructural studies of a discotic mesophase pitch at processing flow conditions. Rheologica Acta, 2010, 49, 845-854.	1.1	13
31	Influence of carbon nanofiber structure on properties of linear low density polyethylene composites. Polymer Engineering and Science, 2010, 50, 93-99.	1.5	13
32	Wetâ€spun, photoinitiatorâ€modified polyacrylonitrile precursor fibers: UVâ€assisted stabilization. Journal of Applied Polymer Science, 2013, 130, 2494-2503.	1.3	13
33	Observations on a low-angle X-ray diffraction peak for AR-HP mesophase pitch. Carbon, 2008, 46, 1166-1169.	5.4	11
34	Shear flow induced microstructure of a synthetic mesophase pitch. Journal of Rheology, 2009, 53, 85-113.	1.3	11
35	Enhancing distributive mixing of immiscible polyethylene/thermoplastic starch blend through zeolite ZSM-5 compounding sequence. Carbohydrate Polymers, 2016, 136, 812-819.	5.1	11
36	Meltâ€spun poly(lactic acid) fibers modified with soy fillers: Toward environmentâ€friendly disposable nonwovens. Polymer Engineering and Science, 2020, 60, 1158-1168.	1.5	11

AMOD A OGALE

#	Article	IF	CITATIONS
37	Hydrolytic Degradation of Nylon 66 Pile Carpet Fibers. Textile Reseach Journal, 2003, 73, 98-104.	1.1	10
38	Effect of poly(ethylene methyl acrylate) copolymer on thermal, morphological, and mechanical properties of polypropylene copolymer blown films. Journal of Applied Polymer Science, 2008, 107, 2500-2508.	1.3	10
39	Effect of heat treatment of carbon nanofibers on polypropylene nanocomposites. Journal of Physics and Chemistry of Solids, 2008, 69, 1407-1410.	1.9	10
40	UVâ€induced crosslinking and cyclization of solution ast polyacrylonitrile copolymer. Journal of Applied Polymer Science, 2013, 128, 2081-2088.	1.3	10
41	Influence of composite electrical properties on the VHF–UHF electromagnetic shielding characteristics of polyethylene–carbon nanoparticle composites. Composites Science and Technology, 2013, 89, 158-166.	3.8	10
42	Carbon Fibers Derived from Acetylated Softwood Kraft Lignin. ACS Symposium Series, 2014, , 137-152.	0.5	10
43	Crystallization behavior of carbon nanofiber/linear low density polyethylene nanocomposites. Journal of Applied Polymer Science, 2007, 106, 2605-2614.	1.3	9
44	Microstructural effects on the dynamic rheology of a discotic mesophase pitch. Rheologica Acta, 2007, 46, 1211-1222.	1.1	9
45	Carbon Fibers. , 2013, , 143-154.		9
46	Fluorescent patterning of paper through laser engraving. Soft Matter, 2020, 16, 7659-7666.	1.2	9
47	Depolymerization of nylon 6: Some kinetic modeling aspects. Journal of Applied Polymer Science, 1984, 29, 3947-3954.	1.3	7
48	Interrelationship of strength and flow characteristics of polystyrene. Polymer Engineering and Science, 1994, 34, 1497-1505.	1.5	7
49	1.3 Pitch Precursor-Based Carbon Fibers. , 2018, , 41-65.		7
50	Boron Nitride-Filled Linear Low-Density Polyethylene for Enhanced Thermal Transport: Continuous Extrusion of Micro-Textured Films. Polymers, 2021, 13, 3393.	2.0	7
51	Influence of Spinning Temperature and Filler Content on the Properties of Melt-Spun Soy Flour/Polypropylene Fibers. Fibers, 2019, 7, 83.	1.8	5
52	Thermal and shear flow effects on microstructure of a thermotropic liquid crystalline polymer. Polymer Engineering and Science, 2006, 46, 1215-1222.	1.5	4
53	Microstructure of carbon nanofiber/thermotropic liquid crystalline polymer composites. Journal of Applied Polymer Science, 2009, 113, 2872-2880.	1.3	4
54	Morphological influence of carbon modifiers on the electromagnetic shielding of their linear low density polyethylene composites. Journal of Applied Polymer Science, 2014, 131, .	1.3	4

AMOD A OGALE

#	Article	IF	CITATIONS
55	Polarized wave electromagnetic shielding of anisotropic carbon nanomodifier-based LLDPE composites. Polymer Engineering and Science, 2015, 55, 299-307.	1.5	3
56	Carbon and glass fiber reinforced thermoplastic matrix composites. , 2021, , 273-306.		3
57	Calendered linear lowâ€density polyethylene consolidated meat and bone meal composites. Journal of Applied Polymer Science, 2014, 131, .	1.3	2
58	Continuously extruded microâ€ŧextured polypropylene films. Polymer Engineering and Science, 2014, 54, 2147-2154.	1.5	2
59	Prediction of Mold Spoilage for Soy/Polyethylene Composite Fibers. International Journal of Polymer Science, 2015, 2015, 1-11.	1.2	2
60	Thermoformable Anhydride–Glycerol Modified Meat and Bone Meal Bioplastics. Journal of Polymers and the Environment, 2015, 23, 517-525.	2.4	2
61	Soyâ€filled polyethylene fibers for modified surface and hydrophilic characteristics. Journal of Applied Polymer Science, 2018, 135, 46609.	1.3	2
62	Study of creep behavior of ultraâ€highâ€molecularâ€weight polyethylene systems. Journal of Biomedical Materials Research Part B, 1998, 40, 214-223.	3.0	1
63	Viscoelastic Computational Modeling of Extruded Micro-textured Polymeric Films. , 2014, 5, 1460-1465.		0