Simon Benhamou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7565754/publications.pdf

Version: 2024-02-01

62 6,442 papers citations

38 62 h-index g-index

63 63 docs citations

63 times ranked 5714 citing authors

#	Article	IF	CITATIONS
1	Evaluating vector navigation in green turtles migrating in a dynamic oceanic environment. Ethology Ecology and Evolution, 2021, 33, 290-306.	1.4	2
2	Foraging efficiency in temporally predictable environments: is a long-term temporal memory really advantageous?. Royal Society Open Science, 2021, 8, 210809.	2.4	8
3	Infrasound as a Cue for Seabird Navigation. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	7
4	Optimizing the use of biologgers for movement ecology research. Journal of Animal Ecology, 2020, 89, 186-206.	2.8	178
5	Identifying stationary phases in multivariate time series for highlighting behavioural modes and home range settlements. Journal of Animal Ecology, 2020, 89, 44-56.	2.8	39
6	High fidelity of sea turtles to their foraging grounds revealed by satellite tracking and capture-mark-recapture: New insights for the establishment of key marine conservation areas. Biological Conservation, 2020, 250, 108742.	4.1	29
7	Flexible migratory choices of Cory's shearwaters are not driven by shifts in prevailing air currents. Scientific Reports, 2018, 8, 3376.	3.3	13
8	Volume-concentrated searching by an aerial insectivore, the common swift, Apus apus. Animal Behaviour, 2018, 136, 159-172.	1.9	14
9	The Gulf Stream frontal system: A key oceanographic feature in the habitat selection of the leatherback turtle?. Deep-Sea Research Part I: Oceanographic Research Papers, 2017, 123, 35-47.	1.4	23
10	Assessing the risk for an obligate scavenger to be dependent on predictable feeding sources. Biological Conservation, 2017, 215, 92-98.	4.1	26
11	Gastrointestinal parasitism and recursive movements in free-ranging mandrills. Animal Behaviour, 2017, 134, 87-98.	1.9	16
12	From randomness to traplining: a framework for the study of routine movement behavior. Behavioral Ecology, 2017, 28, 280-287.	2.2	23
13	How Memory-Based Movement Leads to Nonterritorial Spatial Segregation. American Naturalist, 2015, 185, E103-E116.	2.1	68
14	Ultimate failure of the Lévy Foraging Hypothesis: Two-scale searching strategies outperform scale-free ones even when prey are scarce and cryptic. Journal of Theoretical Biology, 2015, 387, 221-227.	1.7	33
15	Coping with Spatial Heterogeneity and Temporal Variability in Resources and Risks: Adaptive Movement Behaviour by a Large Grazing Herbivore. PLoS ONE, 2015, 10, e0118461.	2.5	33
16	Movement-based analysis of interactions in African lions. Animal Behaviour, 2014, 90, 171-180.	1.9	50
17	Of scales and stationarity in animal movements. Ecology Letters, 2014, 17, 261-272.	6.4	127
18	The spatial ecology of juvenile loggerhead turtles (Caretta caretta) in the Indian Ocean sheds light on the "lost years―mystery. Marine Biology, 2014, 161, 1835-1849.	1.5	38

#	Article	IF	Citations
19	Path integration and coordinate systems. Journal of Theoretical Biology, 2014, 349, 163-166.	1.7	2
20	Periodicity analysis of movement recursions. Journal of Theoretical Biology, 2013, 317, 238-243.	1.7	50
21	Are <scp>C</scp> ape gannets dependent upon fishery waste? <scp>A</scp> multiâ€scale analysis using seabird <scp>GPS</scp> â€tracking, hydroâ€acoustic surveys of pelagic fish and vessel monitoring systems. Journal of Applied Ecology, 2013, 50, 659-670.	4.0	49
22	Spatial memory and animal movement. Ecology Letters, 2013, 16, 1316-1329.	6.4	402
23	How Predictability of Feeding Patches Affects Home Range and Foraging Habitat Selection in Avian Social Scavengers?. PLoS ONE, 2013, 8, e53077.	2.5	143
24	Beyond the Utilization Distribution: Identifying home range areas that are intensively exploited or repeatedly visited. Ecological Modelling, 2012, 227, 112-116.	2.5	107
25	Spatiotemporal dynamics of forage and water resources shape space use of West African savanna buffaloes. Journal of Mammalogy, 2011, 92, 1287-1297.	1.3	47
26	Dynamic Approach to Space and Habitat Use Based on Biased Random Bridges. PLoS ONE, 2011, 6, e14592.	2.5	215
27	The Role of Geomagnetic Cues in Green Turtle Open Sea Navigation. PLoS ONE, 2011, 6, e26672.	2.5	31
28	Incorporating Movement Behavior and Barriers to Improve Kernel Home Range Space Use Estimates. Journal of Wildlife Management, 2010, 74, 1353-1360.	1.8	139
29	Incorporating Movement Behavior and Barriers to Improve Kernel Home Range Space Use Estimates. Journal of Wildlife Management, 2010, 74, 1353-1360.	1.8	81
30	Memory keeps you at home: a mechanistic model for home range emergence. Oikos, 2009, 118, 641-652.	2.7	228
31	Random walk models in biology. Journal of the Royal Society Interface, 2008, 5, 813-834.	3.4	1,101
32	ANIMAL MOVEMENTS IN HETEROGENEOUS LANDSCAPES: IDENTIFYING PROFITABLE PLACES AND HOMOGENEOUS MOVEMENT BOUTS. Ecology, 2008, 89, 3336-3348.	3.2	259
33	HOW MANY ANIMALS REALLY DO THE LÉVY WALK? REPLY. Ecology, 2008, 89, 2351-2352.	3.2	22
34	HOW MANY ANIMALS REALLY DO THE LÉVY WALK?. Ecology, 2007, 88, 1962-1969.	3.2	365
35	Marine Turtles Use Geomagnetic Cues during Open-Sea Homing. Current Biology, 2007, 17, 126-133.	3.9	107
36	The dynamics of group formation in large mammalian herbivores: an analysis in the European roe deer. Animal Behaviour, 2007, 74, 1429-1441.	1.9	50

#	Article	IF	CITATIONS
37	What do European badgers (Meles meles) know about the spatial organisation of neighbouring groups?. Behavioural Processes, 2006, 72, 84-90.	1.1	18
38	DETECTING AN ORIENTATION COMPONENT IN ANIMAL PATHS WHEN THE PREFERRED DIRECTION IS INDIVIDUAL-DEPENDENT. Ecology, 2006, 87, 518-528.	3.2	93
39	FAD: Fish Aggregating Device or Fish Attracting Device? A new analysis of yellowfin tuna movements around floating objects. Animal Behaviour, 2004, 67, 319-326.	1.9	98
40	How to reliably estimate the tortuosity of an animal's path:. Journal of Theoretical Biology, 2004, 229, 209-220.	1.7	429
41	Successful homing of magnet-carrying white-chinned petrels released in the open sea. Animal Behaviour, 2003, 65, 729-734.	1.9	54
42	Bicoordinate navigation based on non-orthogonal gradient fields. Journal of Theoretical Biology, 2003, 225, 235-239.	1.7	35
43	Homing in pelagic birds: a pilot experiment with white-chinned petrels released in the open sea. Behavioural Processes, 2003, 61, 95-100.	1.1	20
44	Path integration in dogs. Animal Behaviour, 1998, 55, 787-797.	1.9	68
45	Place navigation in mammals: a configuration-based model. Animal Cognition, 1998, 1, 55-63.	1.8	17
46	Landmark use by navigating rats (Rattus norvegicus) contrasting geometric and featural information Journal of Comparative Psychology (Washington, D C: 1983), 1998, 112, 317-322.	0.5	89
47	On systems of reference involved in spatial memory. Behavioural Processes, 1997, 40, 149-163.	1.1	46
48	The Neuropsychology of Spatial Cognition in the Rat. Critical Reviews in Neurobiology, 1997, 11, 101-120.	3.1	91
49	Space use and foraging movements in the American red squirrel (Tamiasciurus hudsonicus). Behavioural Processes, 1996, 37, 89-102.	1.1	12
50	No evidence for cognitive mapping in rats. Animal Behaviour, 1996, 52, 201-212.	1.9	66
51	How to find one's way in the labyrinth of path integration models. Journal of Theoretical Biology, 1995, 174, 463-466.	1.7	46
52	Spatial memory and searching efficiency. Animal Behaviour, 1994, 47, 1423-1433.	1.9	100
53	Orientation and foraging movements in a patchy environment by the ant Serrastruma lujae (formicidae-myrmicinae). Behavioural Processes, 1993, 30, 233-243.	1.1	17
54	Distinguishing between elementary orientation mechanisms by means of path analysis. Animal Behaviour, 1992, 43, 371-377.	1.9	76

#	Article	IF	CITATIONS
55	Efficiency of area-concentrated searching behaviour in a continuous patchy environment. Journal of Theoretical Biology, 1992, 159, 67-81.	1.7	159
56	An analysis of movements of the wood mouse Apodemus sylvaticus in its home range. Behavioural Processes, 1991, 22, 235-250.	1.1	44
57	Optimal sinuosity in central place foraging movements. Animal Behaviour, 1991, 42, 57-62.	1.9	61
58	Spatial memory in large scale movements: Efficiency and limitation of the egocentric coding process. Journal of Theoretical Biology, 1990, 145, 1-12.	1.7	118
59	An olfactory orientation model for mammals' movements in their home ranges. Journal of Theoretical Biology, 1989, 139, 379-388.	1.7	60
60	How animals use their environment: a new look at kinesis. Animal Behaviour, 1989, 38, 375-383.	1.9	118
61	Orientation and movement patterns of wood mice (Apodemus sylvaticus) released inside and outside a familiar area Journal of Comparative Psychology (Washington, D C: 1983), 1989, 103, 54-61.	0.5	10
62	Spatial analysis of animals' movements using a correlated random walk model. Journal of Theoretical Biology, 1988, 131, 419-433.	1.7	370