
Klaus Kratochwill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7565640/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Trichoderma G protein-coupled receptors: functional characterisation of a cAMP receptor-like protein from Trichoderma atroviride. Current Genetics, 2008, 54, 283-299.	0.8	64
2	Quantitative real-time polymerase chain reaction for the accurate detection of Toxoplasma gondii in amniotic fluid. Diagnostic Microbiology and Infectious Disease, 2009, 63, 10-15.	0.8	63
3	Ex vivo reversal of in vivo transdifferentiation in mesothelial cells grown from peritoneal dialysate effluents. Nephrology Dialysis Transplantation, 2006, 21, 2943-2947.	0.4	54
4	Biomarker research to improve clinical outcomes of peritoneal dialysis: consensus of the European Training and Research in Peritoneal Dialysis (EuTRiPD) network. Kidney International, 2017, 92, 824-835.	2.6	54
5	Acellular vascular matrix grafts from human placenta chorion: Impact of ECM preservation on graft characteristics, protein composition and inÂvivo performance. Biomaterials, 2018, 177, 14-26.	5.7	54
6	Alanyl–glutamine dipeptide restores the cytoprotective stress proteome of mesothelial cells exposed to peritoneal dialysis fluids. Nephrology Dialysis Transplantation, 2012, 27, 937-946.	0.4	48
7	Xyr1 regulates xylanase but not cellulase formation in the head blight fungus Fusarium graminearum. Current Genetics, 2007, 52, 213-220.	0.8	47
8	Complement Activation in Peritoneal Dialysis–Induced Arteriolopathy. Journal of the American Society of Nephrology: JASN, 2018, 29, 268-282.	3.0	45
9	A randomized controlled trial of alanyl-glutamine supplementation in peritoneal dialysis fluid toÂassess impact on biomarkers of peritonealÂhealth. Kidney International, 2018, 94, 1227-1237.	2.6	45
10	IgG deposition and activation of the classical complement pathway involvement in the activation of human granulocytes by decellularized porcine heart valve tissue. Biomaterials, 2008, 29, 1824-1832.	5.7	44
11	A combinatorial screen of the CLOUD uncovers a synergy targeting the androgen receptor. Nature Chemical Biology, 2017, 13, 771-778.	3.9	39
12	Addition of Alanyl-Glutamine to Dialysis Fluid Restores Peritoneal Cellular Stress Responses – A First-In-Man Trial. PLoS ONE, 2016, 11, e0165045.	1.1	39
13	Dynamic O-Linked N-Acetylglucosamine Modification of Proteins Affects Stress Responses and Survival of Mesothelial Cells Exposed to Peritoneal Dialysis Fluids. Journal of the American Society of Nephrology: JASN, 2014, 25, 2778-2788.	3.0	34
14	Effects of Alanyl-Glutamine Treatment on the Peritoneal Dialysis Effluent Proteome Reveal Pathomechanism-Associated Molecular Signatures. Molecular and Cellular Proteomics, 2018, 17, 516-532.	2.5	32
15	Stress Responses and Conditioning Effects in Mesothelial Cells Exposed to Peritoneal Dialysis Fluid. Journal of Proteome Research, 2009, 8, 1731-1747.	1.8	31
16	HSP-Mediated Cytoprotection of Mesothelial Cells in Experimental Acute Peritoneal Dialysis. Peritoneal Dialysis International, 2010, 30, 294-299.	1.1	30
17	A method to resolve the composition of heterogeneous affinity-purified protein complexes assembled around a common protein by chemical cross-linking, gel electrophoresis and mass spectrometry. Nature Protocols, 2013, 8, 75-97.	5.5	27
18	Functional and Transcriptomic Characterization of Peritoneal Immune-Modulation by Addition of Alanyl-Glutamine to Dialysis Fluid. Scientific Reports, 2017, 7, 6229.	1.6	24

KLAUS KRATOCHWILL

#	Article	IF	CITATIONS
19	A Proteomic View on the Role of Glucose in Peritoneal Dialysis. Journal of Proteome Research, 2010, 9, 2472-2479.	1.8	23
20	Effects of epithelial-to-mesenchymal transition on acute stress response in human peritoneal mesothelial cells. Nephrology Dialysis Transplantation, 2008, 23, 3494-3500.	0.4	22
21	Interleukin-1 Receptor-Mediated Inflammation Impairs the Heat Shock Response of Human Mesothelial Cells. American Journal of Pathology, 2011, 178, 1544-1555.	1.9	21
22	Peritoneal dialysis fluids can alter HSP expression in human peritoneal mesothelial cells. Nephrology Dialysis Transplantation, 2011, 26, 1046-1052.	0.4	21
23	Lithium preserves peritoneal membrane integrity by suppressing mesothelial cell αB-crystallin. Science Translational Medicine, 2021, 13, .	5.8	20
24	Targeted Metabolomic Profiling of Peritoneal Dialysis Effluents Shows Anti-oxidative Capacity of Alanyl-Glutamine. Frontiers in Physiology, 2018, 9, 1961.	1.3	19
25	Alanyl-Glutamine Restores Tight Junction Organization after Disruption by a Conventional Peritoneal Dialysis Fluid. Biomolecules, 2020, 10, 1178.	1.8	19
26	Peritoneal Dialysis Fluid Supplementation with Alanyl-Glutamine Attenuates Conventional Dialysis Fluid-Mediated Endothelial Cell Injury by Restoring Perturbed Cytoprotective Responses. Biomolecules, 2020, 10, 1678.	1.8	17
27	Glucose Derivative Induced Vasculopathy in Children on Chronic Peritoneal Dialysis. Circulation Research, 2021, 129, e102-e118.	2.0	17
28	GSK-3β inhibition protects mesothelial cells during experimental peritoneal dialysis through upregulation of the heat shock response. Cell Stress and Chaperones, 2013, 18, 569-579.	1.2	16
29	ECM Characterization Reveals a Massive Activation of Acute Phase Response during FSGS. International Journal of Molecular Sciences, 2020, 21, 2095.	1.8	14
30	Equalizer technology followed by <scp>DIGE</scp> â€based proteomics for detection of cellular proteins in artificial peritoneal dialysis effluents. Electrophoresis, 2014, 35, 1387-1394.	1.3	11
31	Overexpression of Hsp70 confers cytoprotection during gliadin exposure in Caco-2 cells. Pediatric Research, 2015, 78, 358-364.	1.1	11
32	Increased immunogenicity is an integral part of the heat shock response following renal ischemia. Cell Stress and Chaperones, 2012, 17, 385-397.	1.2	10
33	Feasibility of Metabolomics Analysis of Dialysate Effluents from Patients Undergoing Peritoneal Equilibration Testing. Peritoneal Dialysis International, 2015, 35, 590-592.	1.1	10
34	Podocyte RNA sequencing reveals Wnt- and ECM-associated genes as central in FSGS. PLoS ONE, 2020, 15, e0231898.	1.1	10
35	The Peritoneal Surface Proteome in a Model of Chronic Peritoneal Dialysis Reveals Mechanisms of Membrane Damage and Preservation. Frontiers in Physiology, 2019, 10, 472.	1.3	9
36	A systems pharmacology workflow with experimental validation to assess the potential of anakinra for treatment of focal and segmental glomerulosclerosis. PLoS ONE, 2019, 14, e0214332.	1.1	9

KLAUS KRATOCHWILL

#	Article	IF	CITATIONS
37	Cellular stress-response modulators in the acute rat model of peritoneal dialysis. Pediatric Nephrology, 2010, 25, 169-172.	0.9	8
38	Senescence-Associated Changes in Proteome and <i>O</i> -GlcNAcylation Pattern in Human Peritoneal Mesothelial Cells. BioMed Research International, 2015, 2015, 1-9.	0.9	8
39	The Extracorporeal Proteome-The Significance of Selective Protein Removal During Dialysis Therapy. Proteomics - Clinical Applications, 2018, 12, 1800078.	0.8	7
40	A fetal sheep model for studying compensatory mechanisms in the healthy contralateral kidney after unilateral ureteral obstruction. Journal of Pediatric Urology, 2015, 11, 352.e1-352.e7.	0.6	6
41	Improved Alignment and Quantification of Protein Signals in Two-Dimensional Western Blotting. Journal of Proteome Research, 2020, 19, 2379-2390.	1.8	6
42	Vibrational Spectroscopy of Peritoneal Dialysis Effluent for Rapid Assessment of Patient Characteristics. Biomolecules, 2020, 10, 965.	1.8	6
43	Peritoneal Dialysis Fluid Induces P38-Dependent Inflammation in Human Mesothelial Cells. Peritoneal Dialysis International, 2011, 31, 332-339.	1.1	4
44	A Combined Transcriptome and Bioinformatics Approach to Unilateral Ureteral Obstructive Uropathy in the Fetal Sheep Model. Journal of Urology, 2012, 187, 751-756.	0.2	4
45	Cross-Omics Comparison of Stress Responses in Mesothelial Cells Exposed to Heat- versus Filter-Sterilized Peritoneal Dialysis Fluids. BioMed Research International, 2015, 2015, 1-12.	0.9	4
46	HSP Induction in Mesothelial Cells by Peritoneal Dialysis Fluid Depends on Biocompatibility Test System. International Journal of Artificial Organs, 2011, 34, 405-409.	0.7	3
47	Injury-Induced Inflammation and Inadequate HSP Expression in Mesothelial Cells upon Repeat Exposure to Dual-Chamber Bag Peritoneal Dialysis Fluids. International Journal of Artificial Organs, 2015, 38, 530-536.	0.7	3
48	A Meta-Analysis of Human Transcriptomics Data in the Context of Peritoneal Dialysis Identifies Novel Receptor-Ligand Interactions as Potential Therapeutic Targets. International Journal of Molecular Sciences, 2021, 22, 13277.	1.8	3
49	Composite Outcome Improves Feasibility of Clinical Trials in Peritoneal Dialysis. Peritoneal Dialysis International, 2019, 39, 479-485.	1.1	2
50	Monitoring Daily Ultrafiltration in Automated Peritoneal Dialysis. Clinical Journal of the American Society of Nephrology: CJASN, 2022, 17, 107-110.	2.2	2
51	MO015EVIDENCE FOR IMMUNOMODULATORY EFFECTS OF PERITONEAL ALANYL-GLUTAMINE IN CLINICAL PERITONEAL DIALYSIS DETECTED BY A NOVEL HIGH PERFORMANCE PROTEOMICS BIOMARKER APPROACH. Nephrology Dialysis Transplantation, 2016, 31, i34-i34.	0.4	0
52	FP477METABOLOMIC AND PROTEOMIC ANALYSIS OF MOLECULAR PROCESSES INVOLVED IN CLINICAL PERITONEAL DIALYSIS. Nephrology Dialysis Transplantation, 2018, 33, i197-i197.	0.4	0
53	SuO013ALANYL-GLUTAMINE IN PERITONEAL DIALYSIS FLUIDS IMPROVES PERITONEAL HEALTH AND SYSTEMIC INFLAMMATION: A DOUBLE-BLINDED RANDOMIZED CROSSOVER TRIAL. Nephrology Dialysis Transplantation, 2018, 33, i621-i621.	0.4	0
54	SuO016THE INFLUENCE OF ALANYL-GLUTAMINE ON THE PERITONEAL PROTEOME IN A CHRONIC RAT MODEL OF PERITONEAL DIALYSIS. Nephrology Dialysis Transplantation, 2018, 33, i622-i622.	0.4	0

4

#	Article	IF	CITATIONS
55	SaO060SYSTEMS BIOLOGY ANALYSIS OF LITHIUM-MEDIATED CYTOPROTECTION IN IN VITRO AND IN VIVO PERITONEAL DIALYSIS. Nephrology Dialysis Transplantation, 2019, 34, .	0.4	0
56	SaO057CROSS-OMICS ANALYSIS OF TRANSCRIPTOME, PROTEOME AND METABOLOME DYNAMICS DURING PERITONEAL DIALYSIS. Nephrology Dialysis Transplantation, 2019, 34, .	0.4	0
57	FP614ALANYL-GLUTAMINE DECREASES CELLULAR INJURY AND ENHANCES CYTOPROTECTIVE RESPONSES IN ENDOTHELIAL CELLS DURING PD-FLUID EXPOSURE. Nephrology Dialysis Transplantation, 2019, 34, .	0.4	0
58	P1238EVALUATION OF AN IN VITRO CO-CULTURE MODEL FOR TESTING EFFECTS OF CYTOPROTECTIVE ADDITIVES IN PERITONEAL DIALYSIS FLUIDS ON CARDIOVASCULAR OUTCOME. Nephrology Dialysis Transplantation, 2020, 35, .	0.4	0
59	P1175INTESTINAL MICROBIOME, METABOLOME AND BACTERIALLY-DERIVED UREMIC TOXINS IN PD-PATIENTS - DISPARITIES IN CHRONIC KIDNEY DISEASE AND ACUTE KIDNEY INJURY. Nephrology Dialysis Transplantation, 2020, 35, .	0.4	0
60	FC 102PD INDUCED ARTERIOLAR AND PERITONEAL PATHOMECHANISMS ARE PARTIALLY REVERSED AFTER KIDNEY TRANSPLANTATION. Nephrology Dialysis Transplantation, 2021, 36, .	0.4	0
61	MO679EFFECTS OF ALANYL-GLUTAMINE SUPPLEMENTED PD FLUID ON THE PLASMA METABOLOME AND GUT MICROBIOME IN EXPERIMENTAL PD*. Nephrology Dialysis Transplantation, 2021, 36, .	0.4	0
62	FC 103PROTEOME WIDE OXIDATIVE STRESS PROFILING IN MESOTHELIAL CELLS INDUCED BY PERITONEAL DIALYSIS FLUID. Nephrology Dialysis Transplantation, 2021, 36, .	0.4	0
63	FC 109GLUCOSE DERIVATIVE INDUCED VASCULOPATHY IN CHILDREN ON PERITONEAL DIALYSIS. Nephrology Dialysis Transplantation, 2021, 36, .	0.4	0
64	FC 099DECLINING PERITONEAL HOST DEFENCES REVEALED BY EX-VIVO CYTOKINE RELEASE ASSAY OF PERITONEAL DIALYSIS EFFLUENT CELLS. Nephrology Dialysis Transplantation, 2021, 36, .	0.4	0
65	MO683EXPRESSION OF PARACELLULAR JUNCTION COMPONENTS AND TRANSCELLULAR TRANSPORTERS IN HEALTH, CKD5 AND PERITONEAL DIALYSIS. Nephrology Dialysis Transplantation, 2021, 36, .	0.4	0
66	FC 105LITHIUM PRESERVES PERITONEAL MEMBRANE INTEGRITY BY REDUCING MESOTHELIAL CELL Î [°] B-CRYSTALLIN. Nephrology Dialysis Transplantation, 2021, 36, .	0.4	0
67	MO684A CO-CULTURE MODEL FOR TESTING EFFECTS OF CYTOPROTECTIVE ADDITIVES IN PD FLUIDS ON THE SECRETOME OF MESOTHELIAL AND ENDOTHELIAL CELLS. Nephrology Dialysis Transplantation, 2021, 36, .	0.4	0
68	Assessing mechanical catheter dysfunction in automated tidal peritoneal dialysis using cycler software: a case control, proof-of-concept study. Scientific Reports, 2022, 12, 5657.	1.6	0
69	FC088: Molecular and Functional Characterization of the Mesothelial and Endothelial Cell Barrier in Health, Ckd and Peritoneal Dialysis. Nephrology Dialysis Transplantation, 2022, 37, .	0.4	0
70	MO711: Evaluation of an in Vitro Co-Culture Model for Studying Modulation of Cross-Talk between Endothelial and Mesothelial Cells by Cytoprotective Additives in Peritoneal Dialysis Fluids. Nephrology Dialysis Transplantation, 2022, 37, .	0.4	0
71	MO701: Origin of Proteins in Peritoneal Dialysis Explained by a Transcriptomics/Proteomics Cross-Over Analysis. Nephrology Dialysis Transplantation, 2022, 37, .	0.4	0
72	MO679: Peritonitis May Disrupt Cyclic Periodicity of Ultrafiltration in Peritoneal Dialysis. Nephrology Dialysis Transplantation, 2022, 37, .	0.4	0

KLAUS KRATOCHWILL

#	Article	IF	CITATIONS
73	MO714: PARK7—A Novel Therapeutic Target for Peritoneal Dialysis Induced Peritoneal Membrane and Vascular Transformation. Nephrology Dialysis Transplantation, 2022, 37, .	0.4	ο
74	MO720: Elevated Dialysate IL-6 Concentrations are Prospectively Associated with Impaired TLR-Stimulated Cytokine Release from Peritoneal Cells—a Longitudinal Cohort Study. Nephrology Dialysis Transplantation, 2022, 37, .	0.4	0
75	MO669: Predictive Parameters of Automated PD Cycler Software for Diagnosis of Catheter Dysfunction. Nephrology Dialysis Transplantation, 2022, 37, .	0.4	Ο
76	MO465: Molecular Mechanisms of Vascular Ageing in Children With Chronic Kidney Disease. Nephrology Dialysis Transplantation, 2022, 37, .	0.4	0
77	FC091: Changes in the Gut Microbiome and Systemic Metabolome in an In Vivo Model of Peritoneal Dialysis Supplemented with Alanyl-Glutamine. Nephrology Dialysis Transplantation, 2022, 37, .	0.4	0