
Zhibin Shao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7565579/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MoS ₂ /Si Heterojunction with Vertically Standing Layered Structure for Ultrafast, Highâ€Detectivity, Selfâ€Driven Visible–Near Infrared Photodetectors. Advanced Functional Materials, 2015, 25, 2910-2919.	14.9	554
2	Solution-Processed Graphene Quantum Dot Deep-UV Photodetectors. ACS Nano, 2015, 9, 1561-1570.	14.6	249
3	Ultrafast, Broadband Photodetector Based on MoSe ₂ /Silicon Heterojunction with Vertically Standing Layered Structure Using Graphene as Transparent Electrode. Advanced Science, 2016, 3, 1600018.	11.2	210
4	Surface Charge Transfer Doping of Lowâ€Dimensional Nanostructures toward Highâ€Performance Nanodevices. Advanced Materials, 2016, 28, 10409-10442.	21.0	144
5	12.35% efficient graphene quantum dots/silicon heterojunction solar cells using graphene transparent electrode. Nano Energy, 2017, 31, 359-366.	16.0	114
6	High-efficiency, air stable graphene/Si micro-hole array Schottky junction solar cells. Journal of Materials Chemistry A, 2013, 1, 15348.	10.3	86
7	One-Step Fabrication of CdS Nanoparticle-Sensitized TiO ₂ Nanotube Arrays via Electrodeposition. Journal of Physical Chemistry C, 2012, 116, 2438-2442.	3.1	76
8	Flexible graphene/silicon heterojunction solar cells. Journal of Materials Chemistry A, 2015, 3, 14370-14377.	10.3	74
9	Surface Charge Transfer Doping of Monolayer Phosphorene via Molecular Adsorption. Journal of Physical Chemistry Letters, 2015, 6, 4701-4710.	4.6	63
10	Light-trapping enhanced ZnO–MoS ₂ core–shell nanopillar arrays for broadband ultraviolet-visible-near infrared photodetection. Journal of Materials Chemistry C, 2018, 6, 7077-7084.	5.5	52
11	Hue tunable, high color saturation and high-efficiency graphene/silicon heterojunction solar cells with MgF2/ZnS double anti-reflection layer. Nano Energy, 2018, 46, 257-265.	16.0	51
12	Ultraminiaturized Stretchable Strain Sensors Based on Single Silicon Nanowires for Imperceptible Electronic Skins. Nano Letters, 2020, 20, 2478-2485.	9.1	51
13	Memory phototransistors based on exponential-association photoelectric conversion law. Nature Communications, 2019, 10, 1294.	12.8	47
14	Topological insulator Bi ₂ Se ₃ nanowire/Si heterostructure photodetectors with ultrahigh responsivity and broadband response. Journal of Materials Chemistry C, 2016, 4, 5648-5655.	5.5	44
15	Controllable Synthesis of Concave Nanocubes, Right Bipyramids, and 5-Fold Twinned Nanorods of Palladium and Their Enhanced Electrocatalytic Performance. Journal of Physical Chemistry C, 2013, 117, 14289-14294.	3.1	41
16	Self-driven, broadband and ultrafast photovoltaic detectors based on topological crystalline insulator SnTe/Si heterostructures. Journal of Materials Chemistry A, 2017, 5, 11171-11178.	10.3	40
17	MoO ₃ Nanodots Decorated CdS Nanoribbons for High-Performance, Homojunction Photovoltaic Devices on Flexible Substrates. Nano Letters, 2015, 15, 3590-3596.	9.1	38
18	Tuning the Electronic and Optical Properties of Monolayers As, Sb, and Bi via Surface Charge Transfer Doping. Journal of Physical Chemistry C, 2017, 121, 19530-19537.	3.1	35

Zhibin Shao

#	Article	IF	CITATIONS
19	Surface Charge Transfer Doping <i>via</i> Transition Metal Oxides for Efficient p-Type Doping of Il–VI Nanostructures. ACS Nano, 2016, 10, 10283-10293.	14.6	31
20	High-Performance Nanofloating Gate Memory Based on Lead Halide Perovskite Nanocrystals. ACS Applied Materials & Interfaces, 2019, 11, 24367-24376.	8.0	23
21	Cation exchange synthesis of two-dimensional vertical Cu ₂ S/CdS heterojunctions for photovoltaic device applications. Journal of Materials Chemistry A, 2020, 8, 789-796.	10.3	23
22	Zn-Doped Gallium Nitride Nanotubes with Zigzag Morphology. Journal of Physical Chemistry C, 2009, 113, 14633-14637.	3.1	22
23	Air Heating Approach for Multilayer Etching and Roll-to-Roll Transfer of Silicon Nanowire Arrays as SERS Substrates for High Sensitivity Molecule Detection. ACS Applied Materials & Interfaces, 2014, 6, 977-984.	8.0	18
24	High-sensitivity and self-driven photodetectors based on Ge–CdS core–shell heterojunction nanowires via atomic layer deposition. CrystEngComm, 2016, 18, 3919-3924.	2.6	18
25	Zinc-Ion Storage Mechanism of Polyaniline for Rechargeable Aqueous Zinc-Ion Batteries. Nanomaterials, 2022, 12, 1438.	4.1	17
26	CdS Nanoribbonâ€Based Resistive Switches with Ultrawidely Tunable Power by Surface Charge Transfer Doping. Advanced Functional Materials, 2018, 28, 1706577.	14.9	16
27	Controllable synthesis of SnO2 nanowires and nanobelts by Ga catalysts. Journal of Solid State Chemistry, 2012, 191, 46-50.	2.9	12
28	Efficient photovoltaic devices based on p-ZnSe/n-CdS core–shell heterojunctions with high open-circuit voltage. Journal of Materials Chemistry C, 2017, 5, 2107-2113.	5.5	12
29	Synthesis and electrical property of metal/ZnO coaxial nanocables. Nanoscale Research Letters, 2012, 7, 316.	5.7	11
30	Tuning the electronic transport anisotropy in $\hat{I}\pm$ -phase phosphorene through superlattice design. Physical Review B, 2018, 97, .	3.2	11
31	Lateral homoepitaxial growth of graphene. CrystEngComm, 2014, 16, 2593.	2.6	10
32	One-step fabrication of CdS:Mo–CdMoO4core–shell nanoribbons for nonvolatile memory devices with high resistance switching. Journal of Materials Chemistry C, 2017, 5, 6156-6162.	5.5	8
33	Tuning Electrical and Raman Scattering Properties of Cadmium Sulfide Nanoribbons via Surface Charge Transfer Doping. Journal of Physical Chemistry C, 2019, 123, 15794-15801.	3.1	7
34	Patterned growth of single-crystal 3, 4, 9, 10-perylenetetracarboxylic dianhydride nanowire arrays for field-emission and optoelectronic devices. Nanotechnology, 2015, 26, 295302.	2.6	4
35	P- and N-type Surface Charge Transfer Doping of II-VI Group Semiconductor Nanostructures and Their Enhanced Optoelectronic Properties. , 2015, , .		0