Kathryn S E Cheah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7565274/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	4PBA reduces growth deficiency in osteogenesis imperfecta by enhancing transition of hypertrophic chondrocytes to osteoblasts. JCI Insight, 2022, 7, .	5.0	16
2	Hypertrophic chondrocytes serve as a reservoir for marrow-associated skeletal stem and progenitor cells, osteoblasts, and adipocytes during skeletal development. ELife, 2022, 11, .	6.0	28
3	Hedgehog signaling orchestrates cartilage-to-bone transition independently of Smoothened. Matrix Biology, 2022, 110, 76-90.	3.6	5
4	Deciphering osteoarthritis genetics across 826,690 individuals from 9 populations. Cell, 2021, 184, 4784-4818.e17.	28.9	188
5	PRIMUS: Comprehensive proteomics of mouse intervertebral discs that inform novel biology and relevance to human disease modelling. Matrix Biology Plus, 2021, 12, 100082.	3.5	13
6	Cellular Plasticity in Musculoskeletal Development, Regeneration, and Disease. Journal of Orthopaedic Research, 2020, 38, 708-718.	2.3	4
7	\hat{l}^21 integrin regulates convergent extension in mouse notogenesis, ensures notochord integrity and the morphogenesis of vertebrae and intervertebral discs. Development (Cambridge), 2020, 147, .	2.5	2
8	Transformation of resident notochordâ€descendent nucleus pulposus cells in mouse injuryâ€induced fibrotic intervertebral discs. Aging Cell, 2020, 19, e13254.	6.7	16
9	<scp>IRX3</scp> and <scp>IRX5</scp> Inhibit Adipogenic Differentiation of Hypertrophic Chondrocytes and Promote Osteogenesis. Journal of Bone and Mineral Research, 2020, 35, 2444-2457.	2.8	31
10	Deep-learning-assisted biophysical imaging cytometry at massive throughput delineates cell population heterogeneity. Lab on A Chip, 2020, 20, 3696-3708.	6.0	41
11	Directed Differentiation of Notochord-like and Nucleus Pulposus-like Cells Using Human Pluripotent Stem Cells. Cell Reports, 2020, 30, 2791-2806.e5.	6.4	48
12	Fbxo9 functions downstream of Sox10 to determine neuron-glial fate choice in the dorsal root ganglia through Neurog2 destabilization. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4199-4210.	7.1	13
13	DIPPER, a spatiotemporal proteomics atlas of human intervertebral discs for exploring ageing and degeneration dynamics. ELife, 2020, 9, .	6.0	37
14	Acquisition of multipotent and migratory neural crest cells in vertebrate evolution. Current Opinion in Genetics and Development, 2019, 57, 84-90.	3.3	7
15	The extended chondrocyte lineage: implications for skeletal homeostasis and disorders. Current Opinion in Cell Biology, 2019, 61, 132-140.	5.4	20
16	Lgr5 and Col22a1 Mark Progenitor Cells in the Lineage toward Juvenile Articular Chondrocytes. Stem Cell Reports, 2019, 13, 713-729.	4.8	35
17	Unique and overlapping GLI1 and GLI2 transcriptional targets in neoplastic chondrocytes. PLoS ONE, 2019, 14, e0211333.	2.5	22
18	Quantitative Phase Imaging Flow Cytometry for Ultraâ€Largeâ€Scale Singleâ€Cell Biophysical Phenotyping. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2019, 95, 510-520.	1.5	60

#	Article	IF	CITATIONS
19	Mechanistic insights into skeletal development gained from genetic disorders. Current Topics in Developmental Biology, 2019, 133, 343-385.	2.2	17
20	Multiâ€ATOM: Ultrahighâ€ŧhroughput single ell quantitative phase imaging with subcellular resolution. Journal of Biophotonics, 2019, 12, e201800479.	2.3	34
21	Histological and reference system for the analysis of mouse intervertebral disc. Journal of Orthopaedic Research, 2018, 36, 233-243.	2.3	72
22	Early onset of disc degeneration in SM/J mice is associated with changes in ion transport systems and fibrotic events. Matrix Biology, 2018, 70, 123-139.	3.6	41
23	Synergistic co-regulation and competition by a SOX9-GLI-FOXA phasic transcriptional network coordinate chondrocyte differentiation transitions. PLoS Genetics, 2018, 14, e1007346.	3.5	56
24	Reprogramming of Mouse Calvarial Osteoblasts into Induced Pluripotent Stem Cells. Stem Cells International, 2018, 2018, 1-11.	2.5	0
25	Inhibiting the integrated stress response pathway prevents aberrant chondrocyte differentiation thereby alleviating chondrodysplasia. ELife, 2018, 7, .	6.0	59
26	Asymmetric localization of DLC1 defines avian trunk neural crest polarity for directional delamination and migration. Nature Communications, 2017, 8, 1185.	12.8	16
27	Activating the unfolded protein response in osteocytes causes hyperostosis consistent with craniodiaphyseal dysplasia. Human Molecular Genetics, 2017, 26, 4572-4587.	2.9	28
28	SOXE neofunctionalization and elaboration of the neural crest during chordate evolution. Scientific Reports, 2016, 6, 34964.	3.3	16
29	Label-Free Quantitative Proteomics Reveals Survival Mechanisms Developed by Hypertrophic Chondrocytes under ER Stress. Journal of Proteome Research, 2016, 15, 86-99.	3.7	14
30	SOXE transcription factors form selective dimers on non-compact DNA motifs through multifaceted interactions between dimerization and high-mobility group domains. Scientific Reports, 2015, 5, 10398.	3.3	65
31	Fate of growth plate hypertrophic chondrocytes: Death or lineage extension?. Development Growth and Differentiation, 2015, 57, 179-192.	1.5	90
32	Interplay between Genetic Risk Factors and Protective Mechanisms for Intervertebral Disc Degeneration in Mice. Global Spine Journal, 2015, 5, s-0035-1554500-s-0035-1554500.	2.3	0
33	Predicting the spatiotemporal dynamics of hair follicle patterns in the developing mouse. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2596-2601.	7.1	31
34	The chondrocytic journey in endochondral bone growth and skeletal dysplasia. Birth Defects Research Part C: Embryo Today Reviews, 2014, 102, 52-73.	3.6	67
35	Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12097-12102.	7.1	589
36	A meta-analysis identifies adolescent idiopathic scoliosis association with <i>LBX1</i> locus in multiple ethnic groups. Journal of Medical Genetics, 2014, 51, 401-406.	3.2	79

#	Article	IF	CITATIONS
37	Lumbar disc degeneration is linked to a carbohydrate sulfotransferase 3 variant. Journal of Clinical Investigation, 2013, 123, 4909-4917.	8.2	126
38	SNP rs11190870 near LBX1 is associated with adolescent idiopathic scoliosis in southern Chinese. Journal of Human Genetics, 2012, 57, 244-246.	2.3	64
39	Exhaustion of nucleus pulposus progenitor cells with ageing and degeneration of the intervertebral disc. Nature Communications, 2012, 3, 1264.	12.8	357
40	Indian hedgehog mutations causing brachydactyly type A1 impair Hedgehog signal transduction at multiple levels. Cell Research, 2011, 21, 1343-1357.	12.0	31
41	SOX9 Governs Differentiation Stage-Specific Gene Expression in Growth Plate Chondrocytes via Direct Concomitant Transactivation and Repression. PLoS Genetics, 2011, 7, e1002356.	3.5	174
42	The developmental roles of the extracellular matrix: beyond structure to regulation. Cell and Tissue Research, 2010, 339, 93-110.	2.9	144
43	Loss of procollagen IIA from the anterior mesendoderm disrupts the development of mouse embryonic forebrain. Developmental Dynamics, 2010, 239, 2319-2329.	1.8	22
44	In vivo cellular adaptation to ER stress: survival strategies with double-edged consequences. Journal of Cell Science, 2010, 123, 2145-2154.	2.0	120
45	Utility of HoxB2 enhancerâ€mediated Cre activity for functional studies in the developing inner ear. Genesis, 2009, 47, 361-365.	1.6	10
46	Genome-Wide Haplotype Association Mapping in Mice Identifies a Genetic Variant in <i>CER1</i> Associated With BMD and Fracture in Southern Chinese Women. Journal of Bone and Mineral Research, 2009, 24, 1013-1021.	2.8	21
47	Association between promoter -1607 polymorphism of MMP1 and Lumbar Disc Disease in Southern Chinese. BMC Medical Genetics, 2008, 9, 38.	2.1	44
48	Association of the Asporin D14 Allele with Lumbar-Disc Degeneration in Asians. American Journal of Human Genetics, 2008, 82, 744-747.	6.2	132
49	The molecular and cellular basis of exostosis formation in hereditary multiple exostoses. International Journal of Experimental Pathology, 2008, 89, 321-331.	1.3	35
50	Highly efficient deletion method for the engineering of plasmid DNA with single-stranded oligonucleotides. BioTechniques, 2008, 44, 217-224.	1.8	2
51	Surviving Endoplasmic Reticulum Stress Is Coupled to Altered Chondrocyte Differentiation and Function. PLoS Biology, 2007, 5, e44.	5.6	167
52	Association of the Taq I Allele in Vitamin D Receptor With Degenerative Disc Disease and Disc Bulge in a Chinese Population. Spine, 2006, 31, 1143-1148.	2.0	123
53	The TRP2 Allele of COL9A2 is an Age-Dependent Risk Factor for the Development and Severity of Intervertebral Disc Degeneration. Spine, 2005, 30, 2735-2742.	2.0	124
54	Genomic instability in laminopathy-based premature aging. Nature Medicine, 2005, 11, 780-785.	30.7	579

#	Article	IF	CITATIONS
55	Sox2 is required for sensory organ development in the mammalian inner ear. Nature, 2005, 434, 1031-1035.	27.8	485
56	Misfolding of Collagen X Chains Harboring Schmid Metaphyseal Chondrodysplasia Mutations Results in Aberrant Disulfide Bond Formation, Intracellular Retention, and Activation of the Unfolded Protein Response. Journal of Biological Chemistry, 2005, 280, 15544-15552.	3.4	58
57	Increased efficiency of oligonucleotide-mediated gene repair through slowing replication fork progression. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2508-2513.	7.1	59
58	Mammary gland-specific secretion of biologically active immunosuppressive agent cytotoxic-T-lymphocyte antigen 4 human immunoglobulin fusion protein (CTLA4lg) in milk by transgenesis. Journal of Immunological Methods, 2003, 277, 171-183.	1.4	11
59	An externally fixed femoral fracture model for mice. Journal of Orthopaedic Research, 2003, 21, 685-690.	2.3	53
60	Identification of factors influencing strand bias in oligonucleotide-mediated recombination in Escherichia coli. Nucleic Acids Research, 2003, 31, 6674-6687.	14.5	90
61	The TATA-containing core promoter of the type II collagen gene (COL2A1) is the target of interferon-gamma-mediated inhibition in human chondrocytes: requirement for Stat1alpha, Jak1 and Jak2. Biochemical Journal, 2003, 369, 103-115.	3.7	56
62	Circling, Deafness, and Yellow Coat Displayed by Yellow Submarine (Ysb) and Light Coat and Circling (Lcc) Mice with Mutations on Chromosome 3. Genomics, 2002, 79, 777-784.	2.9	26
63	Chondrocyte antigen expression, immune response and susceptibility to arthritis. International Immunology, 2001, 13, 421-429.	4.0	4
64	Requirement for <i>Pbx1</i> in skeletal patterning and programming chondrocyte proliferation and differentiation. Development (Cambridge), 2001, 128, 3543-3557.	2.5	266
65	Mechanism of Regulatory Target Selection by the SOX High-Mobility-Group Domain Proteins as Revealed by Comparison of SOX1/2/3 and SOX9. Molecular and Cellular Biology, 1999, 19, 107-120.	2.3	165
66	Disrupted expression of matrix genes in the growth plate of the mouse cartilage matrix deficiency (cmd) mutant. , 1998, 22, 349-358.		42
67	Different cis-Regulatory DNA Elements Mediate Developmental Stage- and Tissue-specific Expression of the Human COL2A1 Gene in Transgenic Mice. Journal of Cell Biology, 1998, 141, 1291-1300.	5.2	56
68	Abnormal Compartmentalization of Cartilage Matrix Components in Mice Lacking Collagen X: Implications for Function. Journal of Cell Biology, 1997, 136, 459-471.	5.2	188
69	SOX9 Binds DNA, Activates Transcription, and Coexpresses with Type II Collagen during Chondrogenesis in the Mouse. Developmental Biology, 1997, 183, 108-121.	2.0	640
70	SOX9 directly regulates the type-ll collagen gene. Nature Genetics, 1997, 16, 174-178.	21.4	847
71	The Human α2(XI) Collagen Gene (COL11A2): Completion of Coding Information, Identification of the Promoter Sequence, and Precise Localization within the Major Histocompatibility Complex Reveal Overlap with the KE5 Gene. Genomics, 1996, 32, 401-412.	2.9	25
72	Extensive Alternative Splicing within the Amino-propeptide Coding Domain of α2(XI) Procollagen mRNAs. Journal of Biological Chemistry, 1996, 271, 16945-16951.	3.4	15

#	Article	IF	CITATIONS
73	Characterization of the Complete Genomic Structure of the Human WNT-5A Gene, Functional Analysis of its Promoter, Chromosomal Mapping, and Expression in Early Human Embryogenesis. Journal of Biological Chemistry, 1995, 270, 31225-31234.	3.4	46
74	Tissue-Specific and differential expression of alternatively spliced $\hat{I}\pm 1$ (II) collagen mRNAs in early human embryos. Developmental Dynamics, 1995, 203, 198-211.	1.8	94
75	Autosomal dominant and recessive osteochondrodysplasias associated with the COL11A2 locus. Cell, 1995, 80, 431-437.	28.9	390
76	Further evidence that the failure to cleave the aminopropeptide of type I procollagen is the cause of Ehlers-Danlos syndrome type VII. Human Mutation, 1994, 3, 358-364.	2.5	20
77	Influence of digits, ectoderm, and retinoic acid on chondrogenesis by mouse interdigital mesoderm in culture. Developmental Dynamics, 1994, 201, 297-309.	1.8	29
78	Intron-exon structure, alternative use of promoter and expression of the mouse collagen X gene, Col10a-1. FEBS Journal, 1993, 213, 99-111.	0.2	60