
Chang-Chun Ling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7565230/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Distinct Hibiscus sabdariffa Extract Prevents Iron Neurotoxicity, a Driver of Multiple Sclerosis Pathology. Cells, 2022, 11, 440.	4.1	5
2	Highly Efficient and Stereoselective Synthesis of 6,7â€Dideoxyâ€Î²â€ <scp>dâ€</scp> <i>ido</i> â€octopyranuronates. European Journal of Organic Chemistry, 20 2022, .	223,4	2
3	Versican promotes T helper 17 cytotoxic inflammation and impedes oligodendrocyte precursor cell remyelination. Nature Communications, 2022, 13, 2445.	12.8	22
4	An efficient and scalable synthesis of 2,4-di- <i>N</i> -acetyl- <scp>l</scp> -altrose (<scp>l</scp> -2,4-Alt-diNAc). RSC Advances, 2021, 11, 11583-11594.	3.6	2
5	Genetically encoded multivalent liquid glycan array displayed on M13 bacteriophage. Nature Chemical Biology, 2021, 17, 806-816.	8.0	33
6	Glycoclusters and Glycodendrimers. , 2021, , 263-345.		0
7	Targeting the Chondroitin Sulfate Proteoglycans: Evaluating Fluorinated Glucosamines and Xylosides in Screens Pertinent to Multiple Sclerosis. ACS Central Science, 2019, 5, 1223-1234.	11.3	29
8	Amphiphilic Cyclodextrin-Based Liquid Crystals for Proton Conduction. Journal of the American Chemical Society, 2019, 141, 9217-9224.	13.7	24
9	Liquid crystalline lithium-ion electrolytes derived from biodegradable cyclodextrin. Journal of Materials Chemistry A, 2019, 7, 12201-12213.	10.3	13
10	Bifunctional Pyrrolidin-2-one Terminated Manganese Oxide Nanoparticles for Combined Magnetic Resonance and Fluorescence Imaging. ACS Applied Materials & Interfaces, 2019, 11, 13069-13078.	8.0	13
11	Multi-responsive self-assembled pyrene-appended β-cyclodextrin nanoaggregates: Discriminative and selective ratiometric detection of pirimicarb pesticide and trinitroaromatic explosives. Sensors and Actuators B: Chemical, 2019, 281, 229-238.	7.8	26
12	Chondroitin sulfate proteoglycans as novel drivers of leucocyte infiltration in multiple sclerosis. Brain, 2018, 141, 1094-1110.	7.6	67
13	Synthesis and comparison of mesomorphic behaviour of a cholesterol-based liquid crystal dimer and analogous monomers. Liquid Crystals, 2018, 45, 1164-1176.	2.2	14
14	Dysfunction of pulmonary surfactant mediated by phospholipid oxidation is cholesterol-dependent. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 1040-1049.	2.4	10
15	Supramolecular Liquid Crystals Based on Cyclodextrins. Environmental Chemistry for A Sustainable World, 2018, , 183-240.	0.5	3
16	Synthesis and Unprecedented Complexation Properties of β-Cyclodextrin-Based Ligand for Lanthanide Ions. Inorganic Chemistry, 2018, 57, 8964-8977.	4.0	9
17	A mild acetolysis procedure for the regioselective removal of isopropylidene in di- O -isopropylidene-protected pyranoside systems. Carbohydrate Research, 2017, 445, 7-13.	2.3	7
18	A Family of Amphiphilic Cyclodextrin Liquid Crystals Governed by Dipole–Dipole Interactions. ChemPlusChem, 2017, 82, 423-432.	2.8	12

CHANG-CHUN LING

#	Article	IF	CITATIONS
19	The role of multilayers in preventing the premature buckling of the pulmonary surfactant. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1372-1380.	2.6	16
20	Studies on the 6-homologation of \hat{I}^2 -D-idopyranosides. Carbohydrate Research, 2017, 445, 65-74.	2.3	10
21	Clustering of P ^K -trisaccharides on amphiphilic cyclodextrin reveals unprecedented affinity for the Shiga-like toxin Stx2. Chemical Communications, 2017, 53, 10528-10531.	4.1	10
22	Total Synthesis of β- <scp>d</scp> - <i>ido</i> -Heptopyranosides Related to Capsular Polysaccharides of <i>Campylobacter jejuni</i> HS:4. Journal of Organic Chemistry, 2017, 82, 9662-9674.	3.2	14
23	Inverting substitution patterns on amphiphilic cyclodextrins induces unprecedented formation of hexagonal columnar superstructures. Journal of Materials Chemistry C, 2017, 5, 9247-9254.	5.5	10
24	Synthesis of rationally designed tetrasaccharides for crystallographic and binding studies with <i>Clostridium difficile</i> toxins and unexpected partial N-methylations during catalytic hydrogenation of azides in methanol. Canadian Journal of Chemistry, 2016, 94, 961-968.	1.1	3
25	An inhibitor of chondroitin sulfate proteoglycan synthesis promotes central nervous system remyelination. Nature Communications, 2016, 7, 11312.	12.8	167
26	Cyanoethylation of cyclodextrin derivatives. Canadian Journal of Chemistry, 2016, 94, 436-443.	1.1	1
27	Efficient regioselective O3-monodesilylation by hydrochloric acid in cyclodextrins. Carbohydrate Research, 2015, 410, 36-46.	2.3	7
28	Genetically Encoded Fragment-Based Discovery of Glycopeptide Ligands for Carbohydrate-Binding Proteins. Journal of the American Chemical Society, 2015, 137, 5248-5251.	13.7	67
29	Synthesis of modified Trichinella spiralis disaccharide epitopes and a comparison of their recognition by chemical mapping and saturation transfer difference NMR. Carbohydrate Research, 2014, 383, 1-13.	2.3	8
30	Investigation into the role of the hydrogen bonding network in cyclodextrin-based self-assembling mesophases. Journal of Materials Chemistry C, 2014, 2, 4928-4936.	5.5	19
31	Controlled Acidâ€Mediated Regioselective <i>O</i> â€Desilylations for Multifunctionalization of Cyclodextrins. European Journal of Organic Chemistry, 2014, 2014, 5793-5805.	2.4	7
32	Role of the 4,6-O-acetal in the regio- and stereoselective conversion of 2,3-di-O-sulfonyl-β-d-galactopyranosides to d-idopyranosides. Carbohydrate Research, 2013, 376, 37-48.	2.3	9
33	Evidence of cation-coordination involvement in directing the regioselective di-inversion reaction of vicinal di-sulfonate esters. Organic and Biomolecular Chemistry, 2013, 11, 1887.	2.8	8
34	DIBAL-H-mediated O-desilylation with highly sterically hindered cyclodextrin substrates. Tetrahedron, 2013, 69, 5227-5233.	1.9	8
35	A Scalable Approach to Obtaining Orthogonally Protected β- <scp>d</scp> -Idopyranosides. Journal of Organic Chemistry, 2012, 77, 6760-6772.	3.2	18
36	First Per-6- <i>O</i> -tritylation of Cyclodextrins. Organic Letters, 2012, 14, 1612-1615.	4.6	20

CHANG-CHUN LING

#	Article	IF	CITATIONS
37	Formation, Spectroscopic Characterization, and Solution Stability of an [Fe4S4]2+ Cluster Derived from β-Cyclodextrin Dithiolate. Inorganic Chemistry, 2012, 51, 9883-9892.	4.0	12
38	Diisobutylaluminum Hydride Mediated Regioselective Oâ€Desilylations: Access to Multisubstituted Cyclodextrins. Angewandte Chemie - International Edition, 2012, 51, 1548-1552.	13.8	35
39	CST-Il's recognition domain for acceptor substrates in α-(2→8)-sialylations. Carbohydrate Research, 2011, 346, 1692-1704.	2.3	4
40	Synthesis of a Forssman antigen derivative for use in a conjugate vaccine. Carbohydrate Research, 2011, 346, 2650-2662.	2.3	9
41	Efficient and Versatile Modification of the Secondary Face of Cyclodextrins through Copperâ€Catalyzed Huisgen 1,3â€Dipolar Cycloaddition. European Journal of Organic Chemistry, 2011, 2011, 4853-4861.	2.4	13
42	Eliciting carbohydrate-specific immune response against sialosides: success and challenges. Future Medicinal Chemistry, 2011, 3, 519-534.	2.3	1
43	An efficient conversion of N-acetyl-d-glucosamine to N-acetyl-d-galactosamine and derivatives. Carbohydrate Research, 2010, 345, 2450-2457.	2.3	19
44	Controlled Synthesis of Linear α-Cyclodextrin Oligomers Using Copper-Catalyzed Huisgen 1,3-Dipolar Cycloaddition. Organic Letters, 2010, 12, 3096-3099.	4.6	26
45	DIBAL-H mediated triple and quadruple debenzylations of perbenzylated cyclodextrins. Organic and Biomolecular Chemistry, 2010, 8, 171-180.	2.8	24
46	Total synthesis of LeA-LacNAc pentasaccharide as a ligand for Clostridium difficiletoxin A. Organic and Biomolecular Chemistry, 2010, 8, 128-136.	2.8	17
47	Unexpected regioselective debenzylation leading to modification of both rims of α-cyclodextrin. Tetrahedron Letters, 2009, 50, 4633-4636.	1.4	22
48	The conformation of a tetratritylated α-cyclodextrin with unusual proton NMR. Carbohydrate Research, 2009, 344, 808-814.	2.3	15
49	Concise and Efficient Synthesis of 2-Acetamido-2-deoxy-β- <scp>d</scp> -hexopyranosides of Diverse Aminosugars from 2-Acetamido-2-deoxy-β- <scp>d</scp> -glucose. Journal of Organic Chemistry, 2009, 74, 580-589.	3.2	54
50	Probing a sialyltransferase's recognition domain to prepare α(2,8)-linked oligosialosides and analogs. Chemical Communications, 2009, , 4233.	4.1	10
51	Chemoenzymatic synthesis of GM3and GM2gangliosides containing a truncated ceramide functionalized for glycoconjugate synthesis and solid phase applications. Organic and Biomolecular Chemistry, 2006, 4, 142-154.	2.8	31
52	A general, efficient and stereospecific route to sphingosine, sphinganines, phytosphingosines and their analogs. Organic and Biomolecular Chemistry, 2006, 4, 1140.	2.8	39
53	Thiooligosaccharide Conjugate Vaccines Evoke Antibodies Specific for Native Antigens. Angewandte Chemie - International Edition, 2005, 44, 7725-7729.	13.8	88
54	Synthesis of ganglioside epitopes for oligosaccharide specific immunoadsorption therapy of Guillian-Barré syndrome. Organic and Biomolecular Chemistry, 2004, 2, 1199-1212.	2.8	37

CHANG-CHUN LING

#	Article	IF	CITATIONS
55	A New Homobifunctionalp-Nitro Phenyl Ester Coupling Reagent for the Preparation of Neoglycoproteins. Organic Letters, 2004, 6, 4407-4410.	4.6	87
56	Amphiphilic 6-S-alkyl-6-thiocyclodextrins: unimolecular micellar and reverse micellar behaviour. Journal of the Chemical Society Perkin Transactions II, 1998, , 1513-1516.	0.9	4
57	Cyclodextrin liquid crystals: synthesis and self-organisation of amphiphilic thio-β-cyclodextrins. Journal of the Chemical Society Chemical Communications, 1993, , 438-440.	2.0	54
58	Synthesis and properties of cyclo-α-1,4-manno-2,3-epoxides. Supramolecular Chemistry, 1992, 1, 11-14.	1.2	19
59	Self-organizing systems based on amphiphilic cyclodextrin diesters. Journal of Physical Organic Chemistry, 1992, 5, 518-528.	1.9	57
60	Synthesis and Complexation Properties of a Cyclodextrin-Derived Siderophore Analogue. Angewandte Chemie International Edition in English, 1992, 31, 1381-1383.	4.4	30
61	Multiple tritylation: a convenient route to polysubstituted derivatives of cyclomaltohexaose. Carbohydrate Research, 1992, 223, 287-291.	2.3	36
62	The use of chlorodimethylthexylsilane for protecting the hydroxyl groups in cyclomaltoheptaose (β-cyclodextrin). Carbohydrate Research, 1992, 224, 307-309.	2.3	25
63	The first selective per-tosylation of the secondary OH-2 of β-cyclodextrin. Tetrahedron Letters, 1991, 32, 3997-3998.	1.4	26